

REPORT NO.: P WMA 02/B810/00/0608/2

GROOT LETABA RIVER WATER DEVELOPMENT PROJECT (GLeWaP)

TECHNICAL STUDY MODULE:

Review of Water Requirements

VOLUME 2

MAY 2010

Semenya Furumele Consulting KLM Consulting Services Urban-Econ Developmental Economics Schoeman & Associates

Aurecon (Pty) Ltd PO Box 494 CAPE TOWN South Africa 8000

in association with

LIST OF STUDY REPORTS IN GROOT LETABA RIVER WATER DEVELOPMENT PROJECT (BRIDGING STUDIES)

This report forms part of the series of reports, done for the Bridging Study phase of the GLeWaP. All reports for the GLeWaP are listed below.

REPORT NUMBER	REPORT TITLE
P WMA 02/B810/00/0508	Project Coordination and Management Team
P WMA 02/B810/00/0508/1	Project Coordination and Management Team: Executive Summary Report: Vol 1
P WMA 02/B810/00/0508/2	Project Coordination and Management Team: Main Report: Vol 2
P WMA 02/B810/00/0508/3	Project Coordination and Management Team: Register of Decisions: Vol 3
P WMA 02/B810/00/0508/4	Project Coordination and Management Team
P WMA 02/B810/00/0508/5	Project Coordination and Management Team
P WMA 02/B810/00/0608	Technical Study Module
P WMA 02/B810/00/0608/1	Technical Study Module: Main Report: Vol 1
P WMA 02/B810/00/0608/2	Technical Study Module: Review of Water Requirements: Vol 2
P WMA 02/B810/00/0608/3	Technical Study Module: Groundwater: Vol 3
P WMA 02/B810/00/0608/4	Technical Study Module: Hydrology: Vol 4
P WMA 02/B810/00/0608/5	Technical Study Module: Water Resource Analysis: Vol 5
P WMA 02/B810/00/0608/6	Technical Study Module: Preliminary Design of Nwamitwa Dam: Vol 6
P WMA 02/B810/00/1110/1	Technical Study Module: Preliminary Design of Nwamitwa Dam: Vol 6 - Annexure 1: Appendices
P WMA 02/B810/00/1110/2	Technical Study Module: Preliminary Design of Nwamitwa Dam: Vol 6 - Annexure 2: Appendix B (Part 1): Geotechnical Investigations
P WMA 02/B810/00/1110/3	Technical Study Module: Preliminary Design of Nwamitwa Dam: Vol 6 - Annexure 3: Appendix B (Part 2): Geotechnical Investigations
P WMA 02/B810/00/1110/4	Technical Study Module: Preliminary Design of Nwamitwa Dam: Vol 6 - Annexure 4: Appendix H: Drawings
P WMA 02/B810/00/0608/7	Technical Study Module: Preliminary Design of the Raising of Tzaneen Dam: Vol 7
P WMA 02/B810/00/0608/8	Technical Study Module: Bulk Water Distribution Infrastructure: Vol 8
P WMA 02/B810/00/1110/5	Technical Study Module: Bulk Water Distribution Infrastructure: Vol 8 - Annexure 1 : Appendices
P WMA 02/B810/00/0708	Environmental Management Module
P WMA 02/B810/00/0708/1	Environmental Management Module: Scoping Report: Vol 1
P WMA 02/B810/00/0708/2	Environmental Management Module: Environmental Impact Assessment Report: Vol 2
P WMA 02/B810/00/0708/3	Environmental Management Module: Environmental Management Programme for Borrow Area 1 on the Farm Laborie 515: Vol 3
P WMA 02/B810/00/0708/4	Environmental Management Module: Environmental Management Programme for Borrow Area 2 on the Farm La Parisa 729 (Gubits Farm): Vol 4
P WMA 02/B810/00/0708/5	Environmental Management Module: Environmental Management Programme for Borrow Area 3 on the Farm Letaba Drift 727: Vol 5
P WMA 02/B810/00/0708/6	Environmental Management Module
P WMA 02/B810/00/0708/7	Environmental Management Module
P WMA 02/B810/00/0708/8	Environmental Management Module
P WMA 02/B810/00/0708/9	Environmental Management Module
P WMA 02/B810/00/0708/10	Environmental Management Module
P WMA 02/B810/00/0808	Public Involvement Program
P WMA 02/B810/00/0808/1	Public Involvement Program: Main Report: Vol 1
P WMA 02/B810/00/0808/2	Public Involvement Program
P WMA 02/B810/00/0808/3	Public Involvement Program
P WMA 02/B810/00/0808/4	Public Involvement Program
P WMA 02/B810/00/0808/5	Public Involvement Program

REPORT DETAILS PAGE

Project name:	Groot Letaba River Water Development Project
Report title:	Review of Water Requirements : Volume 2
Authors:	M A Killick and A Sparks
DWA report reference no.:	P 02/B810/00/0608/2
PSP project reference no.:	401775
Status of report:	Final
First issue:	September 2008
Final issue:	May 2010

PSP Approved for PSP by:

S C Vogel Study Leader

PROJECT CO-ORDINATION AND MANAGEMENT TEAM Approved for PCMT by:

R A Pullen Project Coordinator

DEPARTMENT WATER AFFAIRS (DWA) Approved for DWA by:

O J S van den Berg Chief Engineer: Options Analysis North

L S Mabuda Chief Director: Integrated Water Resources Planning

EXECUTIVE SUMMARY

1. INTRODUCTION

1.1 BACKGROUND TO PROJECT

The catchment of the Groot Letaba River has many and varied land uses with their associated water requirements, for example commercial irrigation, commercial afforestation, tourism, as well as primary requirements by the population in the catchment. The water resources available in the catchment are limited, and considerable pressure has been put on these resources in the past. This situation has been investigated at various levels by the Department of Water Affairs (DWA).

The first major study undertaken for this area was the Letaba River Basin Study in 1985 (DWAF, 1990), which comprised the collection and analysis of all available data on water availability and use, as well as future water requirements and potential future water resource developments. This was followed by a Pre-feasibility Study (DWAF 1994), which was completed in 1994. The focus of the Pre-feasibility Study was the complete updating of the hydrology of the Basin. The next study undertaken was the Feasibility Study of the Development and Management Options (DWAF, 1998), which was completed in 1998.

The Feasibility Study proposed several options for augmenting water supply from the Groot Letaba River. These included some management interventions, as well as the construction of a dam at Nwamitwa and the possible raising of Tzaneen Dam. These options would enable additional water to be allocated to the primary water users, would allow the ecological Reserve to be implemented and could also improve the assurance of supply to the agricultural sector.

This Bridging Study was initiated by the (then) Department of Water Affairs and Forestry in 2006 (now Department of water Affairs (DWA)) in order to re-assess the recommendations contained in the Feasibility Study in the light of developments that have taken place in the intervening 10 years.

The study area, shown in **Figure E1**, consists of the catchment of the Letaba River, upstream of its confluence with the Klein Letaba River. The catchment falls within the Mopane District Municipality, which is made up of six local municipalities. The four local municipalities, parts or all of which are within the catchment area, are Greater Tzaneen, Greater Letaba, Ba Phalaborwa, and Greater Giyani. The major town in the study area is Tzaneen, with Polokwane, the provincial capital city of Limpopo, located just outside of the catchment to the West. The site of the proposed Namitwa Dam is also shown on *Figure E1*.

1.2 SCOPE AND ORGANISATION OF PROJECT

The Department's Directorate: Options Analysis (OA), appointed Aurecon in Association with a number of sub-consultants to undertake this study. The official title of the study is: "The Groot Letaba River Water Development Project (Bridging Study)".

The Bridging Study comprises a number of modules. This Report focuses on part of the scope of work for the Technical Study Module (TSM). The tasks comprising the TSM are listed below:

TASK 1:	WATER REQUIREMENTS
TASK 2:	WATER RESOURCE EVALUATION
TASK 3:	PRELIMINARY DESIGN OF NWAMITWA DAM
TASK 4:	RAISING OF TZANEEN DAM
TASK 5:	BULK WATER DISTRIBUTION INFRASTRUCTURE
TASK 6:	IMPLEMENTING PROGRAMME
TASK 7:	WATER QUALITY

1.3 SCOPE OF THIS REPORT

This report describes a portion of Task 1: Water Requirements.

The objectives of Task 1 : Water Requirements were as follows :

- review the current estimates of future water requirements in all user sectors;
- establish present levels of water use in these sectors; and
- assess the availability of groundwater in the project area.

The first two objectives are reported on in this report (Review of Water Requirements) and the last objective is reported on in a separate report (Groundwater) (DWA, 2010a).

Section 2 of this report discusses the existing water supply schemes in the study area. The four different types of water requirements, namely primary water requirements, irrigation and losses, afforestation and ecological requirements are discussed in **Sections 3** to **6**. The conclusions are given in **Section 7** and the recommendations relating to water requirements in **Section 8**. The references are contained in **Section 9**.

2. EXISTING WATER SUPPLY SCHEMES

Water requirements throughout the catchment are met largely, through surface water supply schemes, with very little being supplied from groundwater sources. Surface water is supplied from the Groot Letaba River and its tributaries to the towns of Polokwane, Tzaneen, Haenertsburg, Duiwelskloof as well as to many rural villages. The main surface water supply schemes draw from the Dap Naude, Ebenezer and Tzaneen Dams, and these schemes are listed below. The locations of the towns and rural settlements supplied, as well the dams discussed below are shown in **Figure E2**.

- Dap Naude Dam Water Supply Scheme
- Ebenezer Dam Water Scheme
- Magoebaskloof Dam and Vergelegen Dam Scheme
- Hans Merensky Dam Scheme
- Tzaneen Dam Scheme
- Thapane Dam Scheme
- Thabina Dam Scheme
- Letsitele River Run-of-River Scheme
- Modjadji Dam

The following water resource scheme is located in the Middle Letaba catchment, and is also shown in **Figure E2**.

 Middle Letaba Rural Water Supply Scheme (RWSS) supplied by Middle Letaba Dam

The main conclusion that can be drawn from this section is that many of the existing surface water schemes in the Groot Letaba Catchment have existing allocations that exceed their yields. The overall yield of schemes in the Groot Letaba Catchment is 126 Mm³/a, and the total allocation for domestic, industrial and irrigation usage from these schemes is 177 Mm³/a.

3. PRIMARY WATER REQUIREMENTS

For the purposes of this report, primary water requirements are defined as :

- domestic water requirements (both urban and rural)
- industrial water requirements
- mining water requirements

The existing primary water requirement for the Groot Letaba Catchment is estimated to be 23.5 Mm³/a in 2007. This consists mainly of domestic requirements (22 Mm³/a) and a small industrial component (1.5 Mm³/a). More details of these water requirements and a comparison with the allocations are provided in **Table E1**.

Future primary water requirements were estimated using a variety of methods described in **Appendix B** of this report. Primary water requirements for the Groot Letaba Catchment were estimated to increase by 28.8 Mm³/a from 2007 to 2030, giving a total primary water use of 52.3 Mm³/a in 2030. It was assumed that the industrial component would remain constant at 1.5 Mm³/a, giving an estimated domestic water requirement of 50.8 Mm³/a in 2030. A breakdown of these additional future requirements per major settlement is given in **Table E1**. It should be noted that the increase in domestic water requirement of 28.8 Mm³/a is influenced by higher service levels for the areas surrounding the proposed Nwamitwa Dam (Ritavi 1 (Letaba), Naphuno and Bolobedu (this includes Modjadji, Thapane and the Worcester – Molototsi areas)).

It is estimated that an additional 21 Mm³/a will be required in the area for future mining projects. It is anticipated that these requirements will be met from outside the Groot Letaba Catchment, so are not included in future estimates for the catchment.

		Water Requirements in Mm ³ /a					
Description	Place Name	Allocation 2006/7	Usage 2006/7	Base Value used for Future Projections ^{*1}	Estimated Growth to 2030	Total Future Water Requirements (2030)	
(Domestic use in Groot Letaba catchment	Haenertsburg	0.0	0.0	0.0	0.0	0.00	
upstream of confluence with Klein Letaba River	Tzaneen Town	3.6	2.2 + 1.0 = 3.2	3.6	12.89	16.49	
	Politsi	2.0	2.1	2.0	1.38	3.38	
	Duiwelskloof						
	Ga-Kgapane						
	Letsitele	0.4	0.3	0.3	0.70	1.00	
	Ritavi 2	3.5	8.2	8.2	-3.41	4.79	
	Naphuno	1.7	1.3	1.3	1.60	2.90	
	Namakgale	0.0	0.8	0.8	0.00	0.80	
	Ritavi 1	0.0	1.9	1.9	3.30	5.20	
	Bolobedu	0.2	0.2	0.2	11.31	11.51	
	Sub-total	11.4	18.0	18.3	27.8	46.07	
Domestic use in Middle and Klein Letaba	Giyani * ³	3.7	3.7	3.7	1.0	4.7	
Catchments	Cumulative Sub-total	15.1	21.7	22.0 * ²	28.8	50.8	
	Middle Letaba Dam WTW	2.3	2.3	2.3	No estimate made*3		
	Sub-Total	6.0	6.0	6.0			
Cumulative Sub-total		17.4	24.0	24.3			
Domestic use outside of Letaba Catchment	Polokwane	18.5	4.6 + 18.8 = 23.4	23.4	No estimate made*3		
Sub-total for domestic use		35.9	47.4	47.7			
	Industrial use	3.3	1.5	1.5* ²			
Overall total of primary water requirements		39.2	48.9	49.2	-		

Table E1 Summary of Current and Projected Primary Water Requirements

*1 Note that where the base value differs from the allocation in the previous column, this was based on actual water usage in 2006/7

Current day primary water requirement for Groot Letaba Catchment = 23.5 Mm³/a (22.0 Mm³/a domestic + 1.5 Mm³/a industrial) Growth in water requirement to be met from outside Letaba catchment *2

*3

4. IRRIGATION REQUIREMENTS AND LOSSES

Irrigation comprises the largest water requirement in the catchment, and is estimated to be approximately 192 Mm^3/a from surface water, and 29 Mm^3/a from groundwater.

The following differences in irrigation demands were found when the results of the 1995 Feasibility Study was compared to the 2007 Bridging Study Analysis :

- The local demands supplied upstream of Tzaneen Dam increased by 8 Mm³/a.
- An increase of 29 Mm³/a along the Groot Letaba River from Tzaneen Dam to the Letaba Ranch. Part of this increase was from incorporating the proposed (as opposed to existing) supply of 22 Mm³/a to emerging farmers downstream of the Nondweni Weir. The Feasibility Study reported that 7.9 Mm³/a was supplied to the Masalal canal but this has not been maintained and is now unusable.

Losses along each river reach were estimated and totalled approximately 27.2 Mm³/a. Losses in the river system are a significant factor in the Groot Letaba Catchment, as they affect the yield of the system, especially in the critical drawdown period. Losses also affect the releases made to supply environmental requirements in the Kruger National Park, and international agreements for the flow leaving South Africa and entering Mozambique.

5. AFFORESTATION

Afforestation is a significant water use in the catchment, with an estimated 365 km² of commercial afforestation occurring in the catchment.

Afforestation and some indigenous forests occur in the wetter parts of this study area, mainly in areas with an average mean annual precipitation (MAP) of around 900 mm. These areas are concentrated in the upper reaches of the Groot Letaba, Letsitele, and Middle Letaba and Klein Letaba River catchments. Afforested areas are planted with mainly gum tree species (Eucalyptus), with pine tree species (Pinus spp) being planted to a lesser extent. In the previous studies the areas covered with forest in 1925 were assumed to be indigenous forests, since the afforestation industry only began to grow significantly from 1930 onwards.

There is very little likelihood of further development of afforestation in the catchment, since the Letaba Catchment was categorised as "Category 1" in terms of the 1984 Forestry Act (Act 122 of 1984), which implies that new licences will not be permitted in the catchment (DWAF, 1998). This happened as far back as 1972.

Updated information on the forestry areas (indigenous and afforested) and the growth of the areas was obtained from Schoeman & Vennote. Please refer to their report which is contained in **Appendix C**.

The total area of afforestation was estimated to be 356 km².

Afforestation Water Use

When the water requirements of afforestation modelled in this Bridging Study were compared to the afforestation requirements in the digital Water Resources Yield Model (WRYM) setup available for the previous study, significant differences were found. In most cases, there were differences in the average afforestation requirements between the two studies. The Bridging Study afforestation requirements were adjusted in order to match the afforestation requirements in the previous study, so that the average flows for the common period would remain the same. In most cases, the adjustments increased the water use by afforestation, giving an overall increase of 13 Mm³/a to a total afforestation water use of 78 Mm³/a.

6. ECOLOGICAL RESERVE

A Preliminary Reserve Determination was drafted by DWA, and this document contains the rules describing the desired environmental flow requirements. The proposed ecological water requirement (EWR) requirements consist of a low flow component of 16 Mm³/a and a high flow component of 66 Mm³/a, giving an average annual value of 82 Mm³/a at EWR Site 4 (Letaba Ranch). It should be noted that these figures are average annual values, and so can be lower in a dry year and higher in a wet year.

The present EWR release is $15 \text{ Mm}^3/a$.

7. CONCLUSIONS

A summary of the main conclusions emanating from the Water Requirements and Water Resource Analysis is given below:

- 7.1 Obtaining sufficient suitable data was difficult, as detailed information about existing and future population and water use is not readily available. Where information was not available, estimations were made in order to provide figures to work from.
- 7.2 Water requirements are currently met mainly from surface water sources, with minimal use being made of groundwater. There is considerable potential for increasing the use of groundwater in the catchment, particularly in conjunction with surface water.

- 7.3 Currently the yield from most of the major surface water schemes is over-allocated. The result of this pressure on the available surface water supply is that the supply of water to the irrigation sector is curtailed to below their allocations on an ongoing basis.
- 7.4 The water requirements are summarised in **Table E7.1**

5	Water Requirements in Mm ³ /a			
Description	2007	Additional water requirement to 2030	Total in 2030	
Primary – domestic (see Table 2.6)	22.0	28.8	50.8	
Primary – industrial	1.5	0	1.5	
Sub-total Primary	23.5	28.8	52.3	
Irrigation (surface water) ^{*1}	192.3	0	192.3	
Afforestation	77.6	0	77.6	
Totals (excl. Environmental)	293.4	28.8	322.2	
Primary – mining (to be supplied from outside the catchment)	0	21.0	21.0	
Environmental ^{*2}	14.8 Mm ³ /a = 0.469 m ³ /s	min = 16 Mm³/a max = 82 Mm³/a For EWR Site 4	16 to 82 Mm ³ /a at Site 4	

 Table E7.1
 Summary of Water Requirements in the Groot Letaba Catchment

*1 Irrigation supplied by groundwater is estimated to be an additional 29 Mm³/a

*2 Note that the Environmental Requirement (non-consumptive use) cannot be added to the other water requirements

- 7.4.1 Based on the medium growth scenario, it is anticipated that the primary water requirement for the Groot Letaba Catchment will increase from a 2007 base of 24 Mm³/a to approximately 52 Mm³/a in 2030.
- 7.4.2 Estimates of future population growth rates in the catchment were used to project water requirements for the catchment up to 2030. It is projected that the growth in water requirement from Tzaneen Dam will increase from a current value of 14 Mm³/a to an estimated 22.18 Mm³/a in 2030. It is estimated that the water requirement from the proposed Nwamitwa Dam will be approximately 13 Mm³/a. It must be noted that the figure of 13 Mm³/a is based on a high service level for the areas of Ritavi 1 (Letaba) and Bolobedu (this includes Modjadji, Thapane and the Worcester-Molototsi areas).
- 7.4.3 Irrigation is the largest water requirement in the catchment (192 Mm³/a in 2007) and losses from a significant portion of this requirement (27.2 Mm³/a). The estimation of these losses is an important process because of their influence on the estimate of the yield of surface water schemes.
- 7.4.4 Afforestation is the second largest water requirement in the catchment (77 Mm³/_a in 2007). No increase in afforestation is anticipated in the catchment, but the influence of invasive alien plants has not been investigated.
- 7.4.5 The recent determination of the EWR has introduced an additional requirement, which has increased the pressure on the available surface water.

8. **RECOMMENDATIONS**

The following recommendations are made:

- Given the stressed nature of the available water resources and the anticipated growth in primary water requirements, it is important to undertake verification and validation of water use in the Groot Letaba Catchment.
- It is important that municipalities measure and monitor water use so that in future accurate modelling can take place.
- Due to the stressed resources and the cost of developing new resources, the implementation of water demand/water conservation measures in the catchment is strongly recommended.
- Since the losses in the system are so significant, further investigations should be undertaken to refine the assumptions used to determine "river losses". This will enable the yields of dams in the system to be estimated with a higher level of certainty.
- When the hydrology for the Groot Letaba is revised, it is recommended that the water use of invasive alien plants be modelled as a separate water use.
- A regional study should be undertaken to further investigate increasing the use of groundwater in the catchment, particularly in conjunction with surface water.

TABLE OF CONTENTS

Page

1.	STU	DY INTF	RODUCTION	1
	1.1	BACKGROUND TO PROJECT 1		
	1.2	SCOPE	AND ORGANISATION OF PROJECT	2
	1.3	SCOPE	OF THIS REPORT	4
2.	EXIS	STING W	ATER SUPPLY SCHEMES	5
	2.1	GROOT	LETABA CATCHMENT	5
		2.1.1	Dap Naude Water Supply Scheme	5
		2.1.2	Ebenezer Dam Water Scheme	7
		2.1.3	Magoebaskloof Dam and Vergelegen Dam Scheme	8
		2.1.4	Hans Merensky Dam Scheme	8
		2.1.5	Tzaneen Dam Scheme	9
		2.1.6	Thapane Dam Scheme	10
		2.1.7	Thabina Dam Scheme	10
		2.1.8	Letsitele Run-of-River Scheme	11
		2.1.9	Modjadji Dam	11
	2.2	MIDDLE	ЕТАВА САТСНМЕНТ	11
		2.2.1	Middle Letaba Rural Water Supply Scheme (RWSS)	11
	2.3	SYSTEM	I STORAGE	12
3.	PRI	MARY W	ATER REQUIREMENTS	14
	3.1	CURRE	NT PRIMARY WATER REQUIREMENTS	14
		3.1.1	Groot Letaba Catchment	15
		3.1.2	Greater Tzaneen Local Municipality	18
		3.1.3	Ritavi 1 (area to be supplied by proposed Nwamitwa Dam)	21
	3.2	PROJEC	CTED PRIMARY WATER REQUIREMENTS FOR THE GROOT LETABA CATCHME	NT 21
		3.2.1	Groot Letaba Catchment	21
		3.2.2	Greater Tzaneen Local Municipality	25
		3.2.3	Ritavi 1 (area to be served by the proposed Nwamitwa Dam)	26
		3.2.4	Future Mining Developments	27
	3.3	SUMMA	RY OF PRIMARY WATER REQUIREMENTS	30

4.	IRR	IGATION	N REQUIREMENTS AND LOSSES	32
	4.1	IRRIGA	TION REQUIREMENTS	32
	4.2	LOSSE	S	37
5.	AFF	OREST	ATION	41
	5.1	Introe	DUCTION	41
	5.2	Affor	ESTATION WATER USE	42
6.	ECC	DLOGIC	AL RESERVE	44
7.	CON	NCLUSIC	ONS	49
	7.1	CURRE	INT WATER REQUIREMENTS AND AVAILABLE WATER SUPPLY	
	7.2	Futur	E WATER REQUIREMENTS AND POTENTIAL FUTURE WATER SUPPLY	51
		7.2.1	Primary water requirements	51
		7.2.2	Other future water requirements	51
8.	REC	OMME	NDATIONS	52
9.	REF	ERENC	ES	53

TABLES

Table 2.1	Storage Capacities of Existing Dams in the Catchment1	3
Table 3.1	Primary Water Requirements (Table 12 from Urban-Econ Report in Appendix B) from the Letaba Catchment	7
Table 3.2	Settlements in the Greater Tzaneen Local Municipality1	8
Table 3.3	Population distribution for relevant local municipalities in the secondary study area1	9
Table 3.4	Primary Water Requirements for the Greater Tzaneen Local Municipality2	0
Table 3.5	Projected Water Requirements in 2030 using Method 2 (Table 21 from Urban-Econ Report in Appendix B)2	4
Table 3.6	Present and projected population in the Greater Tzaneen Local Municipality2	5
Table 3.7	Primary Water Requirements from Tzaneen and Proposed Nwamitwa Dam2	7
Table 3.8	Summary of Current and Projected Primary Water Requirements	0
Table 3.9	Summary of Water Requirements of Potential New Mines	1

Table 4.1	Agricultural water allocations from the Government Water Supply Scheme in the Groot Letaba Catchment	s . 35
Table 4.2	Summary of Irrigation Requirements	.36
Table 4.3	Irrigation supplied from groundwater in the Groot Letaba Catchment (excluding the Politsi GWCA)	. 36
Table 5.1	Afforestation Areas in the Letaba Catchment for 2005	.42
Table 5.2	Summary Water Use by Afforestation	.43
Table 6.1	Ecological Water Requirements at Key Sites along the Letaba River	.48
Table 7.1	Summary of Water Requirements in the Groot Letaba Catchment	.49
Table 7.2	Summary of Existing and Future Sources and their Usage	.50

FIGURES

Figure 1.1	Project area	3
Figure 2.1	Primary water demands	6
Figure 3.1	Historical water requirements for Tzaneen Town	26
Figure 3.2	Proposed supply area of Nwamitwa Dam	28
Figure 4.1	Irrigation in the Groot Letaba catchment	34
Figure 4.2	Letaba Ranch Weir (B8H008)	38
Figure 4.3	Black Heron Weir (B8H034).	39
Figure 4.4	Observed losses between Letaba Ranch (B8H008) and Black Heron (B8H034) weirs	39
Figure 6.1	Positions of the EWR sites	45

APPENDICES

Appendix A :	Demands used in WRYM
Appendix B :	Water Requirements Report – Urban-Econ
Appendix C :	Irrigation Assessment - Hennie Schoeman
Appendix D :	Detailed Information Regarding the Determination of Irrigation Demands
Appendix E :	EWR requirements used for different scenarios in the WRYM

Aurecon Electronic Reference: I:\HYDRO\401775 Groot Letaba\Reports\Vol 2 Review of Water Requirements.Acview of Water Requirements.doc

ABBREVIATIONS

DWA	Department of Water Affairs
EMM	Environmental Management Module
EWR	Ecological water requirement
FSA	Full supply area
FSC	Full supply capacity
GWCA	Government Water Control Area
GLeWaP	Groot Letaba River Water Development Project
GLWUA	Groot Letaba Water User Association
GL	Groot Letaba
ha	Hectare
HFY	Historical firm yield
IFM	Institutional and Financial Module
ISP	Internal Strategic Perspective
km ²	Square kilometres
KNP	Kruger National Park
m³/a	Cubic metres per annum
Mm³/a	Million cubic metres per annum
MAP	Mean annual precipitation
MAR	Mean annual runoff
MASE	Mean annual S-pan evaporation
OA	Options Analysis
PCMT	Project Co-ordination and Management Team
PGRWSS	Polokwane Government Regional Water Supply Scheme
PIP	Public Involvement Programme
RDP	Reconstruction and Development Programme
RWSS	Rural Water Supply Scheme
SEE	Socio-economic Evaluation
TSM	Technical Study Module
WR90	Water Resources of South Africa, 1990
WRYM	Water Resources Yield Model
WSDP	Water Services Development Plan
WTW	Water Treatment Works
WUA	Water User Authority

1. STUDY INTRODUCTION

1.1 BACKGROUND TO PROJECT

The catchment of the Groot Letaba River has many and varied land uses with their associated water requirements. These include significant use by agriculture in the form of irrigated crops, commercial afforestation, tourism (particularly linked to the Kruger National Park, which lies partially within the catchment), as well as primary requirements by the population in the catchment. The water resources available in the catchment are limited, and considerable pressure has been put on these resources in the past, with periods of severe and protracted water restrictions occurring over the past 25 years. This situation has been investigated at various levels by the Department of Water Affairs (DWA).

The first major study undertaken for this area was the Letaba River Basin Study in 1985 (DWAF, 1990), which comprised the collection and analysis of all available data on water availability and use, as well as future water requirements and potential future water resource developments. This was followed by a Pre-feasibility Study (DWAF 1994), which was completed in 1994. The focus of the Pre-feasibility Study was the complete updating of the hydrology of the Basin. The next study undertaken was the Feasibility Study of the Development and Management Options (DWAF, 1998), which was completed in 1998.

The Feasibility Study proposed several options for augmenting water supply from the Groot Letaba River. These included some management interventions, as well as the construction of a dam at Nwamitwa and the possible raising of Tzaneen Dam. These options would enable additional water to be allocated to the primary water users, would allow the Ecological Reserve to be implemented and could also improve the assurance of supply to the agricultural sector.

This Bridging Study was initiated by the (then) Department of Water Affairs and Forestry (now DWA) in 2006, in order to re-assess the recommendations contained in the Feasibility Study, in the light of developments that have taken place in the intervening 10 years. Other contributing factors to the DWA's decision to undertake Bridging Studies were the promulgation of the Water Services Act and the National Water Act in 1997 and 1998, respectively, and the recently completed Reserve Study on the Letaba River.

The study area is shown in **Figure 1.1**. It consists of the catchment of the Letaba River, upstream of its confluence with the Klein Letaba River. The catchment falls within the Mopane District Municipality, which is made up of six Local Municipalities. The Local Municipalities within the catchment area are Greater Tzaneen, Greater Letaba, and Greater Giyane. The major town in the study area is Tzaneen, with the urban centre of Polokwane located just outside of the catchment to the west. The site of the proposed Namitwa Dam is also shown in **Figure 1.1**.

1.2 SCOPE AND ORGANISATION OF PROJECT

The DWA Directorate: Options Analysis (OA), appointed Aurecon in association with a number of sub-consultants (listed below) to undertake this study. The official title of the study is "The Groot Letaba River Water Development Project : Bridging Study".

An association exists between the following consultants for the purposes of this study:

- Aurecon
- Semenya Furumele Consulting
- KLM Consulting Services
- Urban-Econ Developmental Economists
- Schoeman & Vennote

The Bridging Study comprises a number of modules, namely: an Environmental Management Module (EMM), a Public Involvement Programme (PIP), a Technical Study Module (TSM), and an Economic Evaluation (EE). This Report focuses on part of Task 1 for the Technical Study Module (TSM).

The tasks comprising the TSM are summarised below:

TASK 1: WATER REQUIREMENTS
TASK 2: WATER RESOURCE EVALUATION
TASK 3: PRELIMINARY DESIGN OF NWAMITWA DAM
TASK 4: RAISING OF TZANEEN DAM
TASK 5: BULK WATER DISTRIBUTION INFRASTRUCTURE
TASK 6: IMPLEMENTING PROGRAMME
TASK 7: WATER QUALITY

1.3 SCOPE OF THIS REPORT

This report describes a portion of Task 1 : Water Requirements. The objectives of Task 1 : Water Requirements were as follows :

- review the current estimates of future water requirements in all user sectors,
- establish present levels of water use in these sectors,
- assess the availability of groundwater in the project area.

The first two objectives are reported on in this report (*Review of Water Requirements*) and the last objective is reported on in a separate report (*Groundwater*) (DWA, 2010a).

The main content of this report is contained in **Sections 2** to **6**. Section contains a description of the existing water supply infrastructure in the catchment, and how water is allocated to the different users from each scheme. The existing and future primary user water requirements are reviewed in **Section 3**.

Section 4 reports on the water demand of irrigated agriculture. The water use by commercial afforestation located in the wetter, western part of the catchment is discussed in **Section 5** of the report. The water requirement for the Ecological Reserve is reported on in **Section 6** of the report.

A summary of all the existing and future water requirements in the catchment is given in **Section 7**, along with the conclusions from the study. Recommendations relating to water requirements are given in **Section 8**. The references are contained in **Section 9**.

2. EXISTING WATER SUPPLY SCHEMES

This section of the report was compiled from information provided in previous reports, updated with the latest details obtained from sources such as the DWA, local municipalities and irrigators. Extensive use was made of the most recent study entitled *Letaba River System Annual Operating Analysis* by Semenya Furumele Consulting (DWAF, 2006a) for the background information pertaining to the various supply schemes, and this is particularly acknowledged.

The locations of the towns and settlements supplied, as well the dams discussed below are shown in **Figure 2.1**. A detailed table showing allocations actual usage and demands used in this Bridging Study is provided in **Appendix A**. The water requirements, allocation and usage are summarised in **Section 3**.

2.1 GROOT LETABA CATCHMENT

Water requirements throughout the catchment are met largely through surface water supply schemes, with very little being supplied from groundwater sources. Surface water is supplied from the Groot Letaba River and its tributaries to the towns of Polokwane, Tzaneen, Haenertsburg, Duiwelskloof as well as to many rural villages. The main surface water supply schemes are centred around the Dap Naude, Ebenezer and Tzaneen Dams, and these schemes are described in detail below. Their locations are shown on **Figure 2.1**.

The groundwater investigation that was undertaken as part of this study (DWA, 2010a) reported that 10.6 Mm³/a was used for domestic supply to villages. The study showed that there was considerable potential for the increased use of groundwater in the catchment, particularly in conjunction with surface water, to improve the quality of groundwater without expensive treatment. It was recommended that a regional study be undertaken to investigate this option in more detail.

2.1.1 Dap Naude Water Supply Scheme

The Dap Naude Dam is the main component of this water supply scheme and was built in 1958. The dam is located on the Broederstroom, a tributary of the Groot Letaba River. The natural mean annual runoff (MAR) at this point is 15.4 Mm³/a. The dam has a full supply capacity of 1.97 Mm³, and the historic firm yield is 3.2 Mm³/a (DWAF, 2006a).

Polokwane Municipality owns the Dap Naude Dam, and it is operated by Lepelle Northern Water for the Polokwane Government Regional Water Supply Scheme (PGRWSS). Water is used for domestic and industrial water requirements in Polokwane.

A compensation release for irrigation is made as defined by a Water Court ruling. The compensation release is 0.28 m^3 /s from November to June, with the full inflow to the dam being released from July to October.

The allocation from the dam to Polokwane is $6.52 \text{ Mm}^3/a$, which is higher than the historic firm yield of the dam. The actual use in the 2007 calendar year was of the order of $3.2 \text{ Mm}^3/a$. For the purposes of this Bridging Study, the full allocation of $6.52 \text{ Mm}^3/a$ was modelled in the Water Resources Yield Model (WRYM).

2.1.2 Ebenezer Dam Water Scheme

The Ebenezer Dam is located on the Helpmekaar River in the upper reaches of the Groot Letaba River, just downstream of the Dap Naude Dam. It supplies both domestic and irrigation users and has a gross storage capacity of 70.0 Mm³.

Domestic water is supplied to Tzaneen and Polokwane and its surrounding settlements. According to DWA (pers comm., Jakkie Venter, 2008), Tzaneen Municipality has an allocation of 2.4 Mm³/a from this dam, which was used for modelling purposes in this Bridging Study (note that 3.58 Mm³/a is given in the Semenya Study).

The water allocation for Polokwane and its surrounding settlements from Ebenezer Dam is 12.0 Mm³/a, which was used for modelling purposes in this Bridging Study. Their current usage from the dam is 18.8 Mm³/a. The allocation from Ebenezer Dam to Polokwane was reduced from its original value of 18.5 Mm³/a given in the White Paper WP-I 1984. This water is also supplied by the PGRWS, giving the PGRWS a total allocation of 18.5 Mm³/a (6.5 Mm³/a from Dap Naude and 12.0 Mm³/a from Ebenezer) for bulk water supply to Polokwane from the Groot Letaba Catchment.

The allocation of irrigation water from the dam is 12.92 Mm³/a, which includes about 3 Mm³/a for transmission losses. This water is released from the Ebenezer Dam directly into the river and diverted further downstream into two canal systems at George's Valley weir (B8H016) and Pusela weir. If there are no restrictions, the bulk of the allocation is released into these two canals (2.57 and 6.55 Mm³/a, respectively). It supplies irrigators along the river reach between Ebenezer Dam and Tzaneen Town.

A total of 27.32 Mm^3/a (2.4 Mm^3/a to Tzaneen Municipality + 12.0 Mm^3/a to Polokwane + 12.92 Mm^3/a to irrigation = 27.32 Mm^3/a) is currently allocated from Ebenezer Dam. This is higher than the 1:50 year yield of 23.9 Mm^3/a (DWAF, 2006a), which means that the dam is currently over-allocated at the 1:50 assurance level.

2.1.3 Magoebaskloof Dam and Vergelegen Dam Scheme

The Magoebaskloof Dam is located on the Politsi River, which is a tributary of the Groot Letaba River, upstream of the Tzaneen Dam. It has a gross storage capacity of 4.8 Mm³ and a historic firm yield of 9.1 Mm³/a (DWAF, 2006a). It supplies the towns of Politsi, Duiwelskloof and Ga-Kgapane with domestic and industrial water. A canal transfers water from the Magoebaskloof Dam to Vergelegen Dam, from where Politsi, Duiwelskloof and Ga-Kgapane are supplied. These domestic users have an allocation of 2.0 Mm³/a, and used 2.1 Mm³/a during 2006/2007. The allocation of 2.0 Mm³/a was used for modelling purposes in this Bridging Study.

When the dam was built, the intention was to supply irrigation water to the now disbanded Tzaneen Irrigation Board and Sapekoe Tea Estates.

The Vergelegen Dam is mainly a balancing dam for accepting water from the Magoebaskloof Dam with some inflow from its own catchment. It has a capacity of 0.3 Mm³. The water stored in the dam was used to irrigate up to 1 000 ha on the Sapekoe Tea Estate. This scheme is no longer viable, so there is no water use at present. However, the Magoeba tribe have laid claim to the land and may use the water in future. Hence the demand was retained on the system.

In addition, Sapekoe Estates has an allocation of 0.87 Mm³/a from the Debengeni River upstream of the Magoeboeskloof Dam (of which 0.6 Mm³/a is for irrigation), which is obtained via a pipeline.

Irrigation water users draw water from the canal between Magoebaskloof Dam and Vergelegen Dam as well as from the Vergelegen Dam itself. Irrigation water is abstracted either directly from the dam basin and outlets or from a gravity pipeline. Irrigation use is estimated to be 3.2 Mm³/a.

2.1.4 Hans Merensky Dam Scheme

The Hans Merensky Dam is located on the Ramadiepa River, which is a tributary of the Groot Letaba River, upstream of Tzaneen Dam. It has a capacity of 1.2 Mm³ and the historical firm yield is estimated to be 6.8 Mm³/a (DWAF, 2006a).

Water is supplied from the Hans Merensky Dam to irrigate approximately 1 169 ha of agricultural land in the B81B catchment. Approximately 638 ha occurs on land belonging to Westfalia Estates, and the remainder on other farms in the quaternary catchment. Irrigators in the area also obtain water directly from the river, as well as from the Selokwe River and its tributaries.

2.1.5 Tzaneen Dam Scheme

Tzaneen Dam is located on the Groot Letaba River upstream of its confluence with the Letsitele River, close to the town of Tzaneen. It has a gross storage capacity of about 157.6 Mm³. This mainly serves the irrigation requirement along the Groot Letaba River valley, domestic and industrial water supply to Tzaneen, Nkowakowa, Letsitele, Consolidated Murchinson Mines, several other small industrial users and a large number of rural villages. The present allocation from the dam to Tzaneen Town for domestic and industrial supply is 1.2 Mm³/a and their usage from this dam in 2006/2007 was 1.0 Mm³/a.

Currently, provision has also been made to release 0.6 m^3 /s (19 Mm³/a) from the Nondweni Weir supported by the Tzaneen Dam with 7.2 Mm³/a to the Kruger National Park for ecological requirements. This provision to maintain a flow of 0.6 m^3 /s will however change in the future, with the implementation of the Ecological Water Requirements (EWRs). This is discussed in more detail in **Section 2.6** of this report.

The irrigation water is released directly into the Groot Letaba River and is pumped from the river by irrigators and also diverted from the river into canals at the Letaba North (B8H060), N&N (B8H024) and Prieska (B8H017) weirs. The weirs are located approximately 10 km, 17 km and 75 km, respectively, downstream of Tzaneen Dam.

The gross irrigation allocation of 105 Mm³/a includes 23% transmission losses abstracted as follows:

•	Letaba North (just downstream of B8H060 at Yamor	na)	28.8 Mm³/a
•	N&N canal (B8H024 at Fleurbaai)	-	12.2 Mm³/a
•	Pump irrigators	-	31.5 Mm³/a
•	Unused allocation available for emerging irrigators	_	<u>32.5 Mm³/a</u>
			105.0 Mm³/a

A detailed table showing the allocations and useage from Tzaneen Dam for primary water requirements is provided in **Appendix A**. The current total allocation (for primary water requirements) is 8.4 Mm³/a. A larger value of 13.9 Mm³/a was used as a demand from Tzaneen Dam in the WRYM for this Bridging Study. This was mainly as a result of

the higher use than the allocations in some areas, such as Nkowakowa (use = $8.2 \text{ Mm}^3/a$ compared to an allocation of $3.5 \text{ Mm}^3/a$), and Ritavi 1 (use = $9 \text{ Mm}^3/a$ compared to an allocation of zero).

The total present water allocation from Tzaneen Dam is $113.4 \text{ Mm}^3/a$ (105 (irrigation) + 1.2 (domestic) + 7.2 (EWR). The historical yield (1:68 years) is 74.6 Mm³/a, according to the Semenya Furumele Report (DWAF, 2006a). One of the proposals which is considered in this study is raising Tzaneen Dam. This is reported on in the report entitled *Water Resource Analysis* (DWA, 2010b), which concluded that a 3 m raising would result in an additional 4 Mm³/a of yield. The increase in yield could be made available to existing users.

2.1.6 Thapane Dam Scheme

This scheme abstracts water from a weir in the river downstream of the Thapane Dam. The Thapane Dam is located on the Nwanedzi River, which is a tributary of the Groot Letaba River. Its yield is estimated to be 1.5 Mm³/a (Mopani WSDP, 2008).

Various boreholes with a combined yield of 1.4 Ml/day (0.5 Mm³/a) provide additional water to this area. In addition, about 1 740 ha is irrigated in the upper reaches of the Nwanedzi and Hlangana Rivers by pumping from a number of farm dams, estimated to have a total combined storage capacity of about 10 Mm³.

2.1.7 Thabina Dam Scheme

The Thabina Dam has a capacity of 2.8 Mm^3 and is located in the Thabina River, a tributary of the Letsitele River. The current allocation for domestic supply from the dam to Naphuno is $1.7 \text{ Mm}^3/a$, and the corresponding use in 2006/2007 was $1.3 \text{ Mm}^3/a$. The historic firm yield is $2.9 \text{ Mm}^3/a$ (DWAF, 2006a), and this amount was abstracted from Thabina Dam when determining the yield of Nwamitwa for this Bridging Study.

Some 193 ha are irrigated from run-of-river with limited supplies from Thabina Dam. The total annual requirement for irrigation is 1.61 Mm³.

In the lower reaches of the Thabina River, irrigation water is diverted by a weir into a canal on the right bank to irrigate some 193 ha. Impoundments on tributaries of the Thabina River, including Rigo Dam (capacity 1.30 Mm³) and Burgersfort Dam (capacity), are used to augment irrigation water supply. Acording to Hennie Schoeman (pers comm., 2008), about 357 ha are irrigated from surface water resources in the Thabina Catchment.

2.1.8 Letsitele Run-of-River Scheme

According to Semenya Furumele (DWAF, 2006a), about 2 169 ha is scheduled for irrigation out of the Letsitele River. Six canals currently supply run-of-river water to about 900 ha and the remaining area is irrigated from river pumps. About 1 600 ha are under permanent crops. The remainder of the area is irrigated on an opportunistic basis.

According to Hennie Schoeman (pers. comm, 2008) about 2 700 ha is irrigated in the Letsitele Catchment from surface water.

2.1.9 Modjadji Dam

The Modjadji Dam is located on the Molototsi River and has a full supply capacity of 8.2 Mm^3 . The yield is estimated to be $5.1 \text{ Mm}^3/a$. The urban supply from this dam to Bolebedu for domestic use was about $0.2 \text{ Mm}^3/a$. The water use in 2006/2007 matched this allocation. To model the full impact of this dam on the system, a demand equal to its historical firm yield ($5.1 \text{ Mm}^3/a$) was applied when modelling the benefits of Nwamitwa Dam. A value of $5.1 \text{ Mm}^3/a$ was used for modelling purposes in this Bridging Study.

2.2 MIDDLE LETABA CATCHMENT

2.2.1 Middle Letaba Rural Water Supply Scheme (RWSS)

The supply from the Water Treatment Works (WTW) at the Middle Letaba Dam and at Giyani (supplied from Nsami Dam, which is in turn augmented from the Middle Letaba Dam) was estimated to be 3.7 and 2.3 Mm³/a, respectively, although the readings at the Giyani WTW (B8H068) were of poor quality. The actual allocation is not known.

The Middle Letaba Dam (capacity 184 Mm³ and yield of 16 Mm³/a (DWAF, 2006a)) delivers water to the Nsami Dam (capacity 24.4 Mm³) through a 60 km long concrete canal with a capacity of 4 m³/s. On the left bank, irrigation plots have been developed alongside the canal and 11 pump stations deliver water from the canal through a pipeline system to the field edge. A minimum flow has to be maintained in the canal to ensure sufficient head on the pumps.

From Nsami Dam, a short canal (6 km long) delivers water to irrigation plots on the left bank of the Nsami River, including 200 ha of bananas. Other irrigation areas not linked to the canal system include areas at Mabunda, the Melkpasies and the Dumazi, where water is obtained directly from the Klein Letaba and Nsami Rivers. A total of 2 400 ha has been developed and equipped for irrigation. The irrigation water requirement to serve this area is estimated to be approximately 21 Mm³/a.

Because of the low yield of the system, the water supplied to irrigators may be significantly less than the annual requirement.

2.3 SYSTEM STORAGE

Historical information regarding storage capacities of existing dams is summarised in **Table 2.1**. One of the main factors that can be clearly seen in **Table 2.1** is that many of the surface water schemes have existing allocations that exceed their yields. The surface water schemes in the Groot Letaba catchment have a total allocation of 177 Mm³/a and an estimated total yield of 126 Mm³/a. The positions of the major dams mentioned in **Table 2.1** are shown in **Figure 2.1**.

	WR90 Quaternary Sub- catchment	River	Major Dams								Farm Dams
Sub- catchment			Name of Dam	Cumulative Natural MAR at damsite	Gross Full Supply Capacity (FSC) (Mm ³)	Full Supply Area (FSA) (km²)	Year Built	Historic Fi Yield (Mm³/a)	rm	Volume Allocated (Mm³/a)* ⁶	Full Supply Capacity (Mm ³)
Groot Letaba	B81A	Broederstroom	Dap Naude	15.4	1.97	0.281	1958	3.2		6.52	
		Confluence of Helpmekaar and Broederstroom	Ebenezer	48.6	70.0	3.86	1959	23.9* ¹		27.32	1.7
		Politsi	Magoebaskloof	36.1	4.8	0.453	1971	9.1* ²	15.0		
	B81B	Mahitse	Hans Merensky	26.4	1.2	0.486	1958	6.8	15.9	0.3	2.9
		Groot Letaba	Tzaneen	202.4	157.6	11.69	1977	74.6		8.4 ^{*4} + 105 ^{*5} = 113.4	
	B81C										6.3
	B81D	Thabina	Thabina	5.6	2.8	0.24	1984	2.9		1.7*4	7.1
	B81E										21.4
	B81F (portion)										9.4
	B81G and B81H	Molototsi	Modjadji	11.8	8.2	1.16	1997	5.1		0.2*4	5.2
	H81F (portion) and B81J										1.1
Sub-total for Gr	oot Letaba		•		246.57			125.6		177.4	55.1
Middle Letaba	B82D	Middle Letaba	Middle Letaba	60.5	184		1984				
	B82A		Lorna Dawn	20.6* ³	12		1971	Not availat	ble		Not available
Klein Letaba	B82H	Nsama	Nsami	3.4	24.4		176]
Overall Total					466.9			125.6		177.4	55.1

Table 2.1 Storage Capacities of Existing Dams in the Catchment

*1 1:50 year assurance

*2 Includes yield of Vergelegen Dam

*3 For whole of B82A

*4 Domestic allocation only

*5 Irrigation allocation only

*6 For more detail regarding allocations, please refer to **Table 7.2** in this report

3. PRIMARY WATER REQUIREMENTS

There were three main areas of focus for determining the primary water requirements. These are listed below, and shown on **Figure 2.1**.

- The catchment of the Groot Letaba River (excluding the catchments of the Middle, Klein and Lower Letaba Rivers).
- The supply area for the Greater Tzaneen Local Municipality (which includes the town of Tzaneen as well as numerous rural settlements, such as Naphuno and Ritavi 2).
- The supply area for the proposed Nwamitwa Dam, which is concentrated around Ritavi 1.

The full report on the Water Requirements task undertaken by Urban-Econ is contained in **Appendix B**. The main findings of their report are summarised in this section. Urban-Econ's focused on primary water requirements for the Groot Letaba Catchment only. Some information for the Middle, Klein and Lower Letaba Catchments has been added where applicable, but the emphasis is on the Groot Letaba Catchment.

The Urban-Econ report refers to the Groot Letaba Catchment as their "secondary study area". This includes the three local municipalities that cover the area, namely the Greater Tzaneen, Greater Letaba and Greater Giyani Local Municipalities, which form part of the Mopani District Municipality. The supply area around the proposed Nwamitwa Dam is referred to as their "primary study area".

For the purposes of this report, primary water requirements are determined as follows:

- domestic water requirements (both urban and rural)
- industrial water requirements
- mining water requirements

3.1 CURRENT PRIMARY WATER REQUIREMENTS

The current water requirements for the Groot Letaba Catchment, the Greater Tzaneen Local Municipality and Ritavi 1 (which falls in the area to be supplied by the proposed Nwamitwa Dam) are discussed in the sections that follow.

3.1.1 Groot Letaba Catchment

The primary demands in the catchment in 2006/2007 are summarised in **Table 3.1**. The water usage for the towns and settlements in the study area is given for the years 2000 (column 3) and 2006/7 (column 5). The official allocation to each settlement as at 2006/7 is also shown in the **Table 3.1** (column 4). If one looks at the Groot Letaba Catchment, the allocation of 11.4 Mm³/a was exceeded in the year 2000, when the annual water usage was 13.95 Mm³/a, and again in 2006/7 when the usage was 18 Mm³/a.

The information in the three columns mentioned above was used to determine two different base case scenarios for this study, which are described below:

Base Value used for Water Resources Yield Model (WRYM)

One of the major outcomes of this study is the estimation of the incremental yield that will be available from the proposed Nwamitwa Dam. This was determined using the WRYM and the details of that process are contained in a separate report entitled "Water Resource Analysis" (DWA, 2010b). A set of current day water requirements was needed so that the water use in the system could be modelled as accurately as possible. The base values that were used for the WRYM are shown in column 6 of Table 3.1 and total 50.8 Mm³/a. In most cases, the largest volume was chosen as the base value for the WRYM. There were some exceptions where the allocation For example, Polokwane's allocation of 18.5 Mm³/a was chosen was chosen. instead of their current day use of 23.4 Mm³/a. In the case of Naphuno, a value of 2.9 Mm³/a was chosen because it represents the historical firm yield (HFY) of Thabinia Dam. This is larger than the current usage (1.3 Mm³/a) or allocation (1.7 Mm³/a), and will allow the full yield of that dam to be used in future. Bolobedu was treated similarly, with a base value equivalent to the HFY of Modjadji Dam being selected (5.1 Mm³/a), instead of the current day use of 0.2 Mm³/a. This base value used for the WRYM is provided for completeness and is not used further in this report.

Base Value used for Future Projections

In order to estimate future water requirements, a present day base value was required. This is shown in Column 7 of **Table 3.1**. In most cases, the 2006/7 (column 5) usage was chosen. Tzaneen Town was an exception, where their allocation of 3.6 Mm³/a was chosen instead of their current day usage of 3.2 Mm³/a. Similarly, the allocation of 2.0 Mm³/a was chosen for the settlements of Politsi, Duiwelskloof and Ga-Kgapane.

A value of 18.3 Mm³/a has been adopted as a base value for projections of future water requirements. This base value increases to 22.0 Mm³/a when adding the domestic use for Giyani. Giyani is included because it obtains water from the Groot Letaba Catchment. An additional requirement of 1.5 Mm³/a for industrial use in the catchment gives a total present day primary water requirement of 23.5 Mm³/a for the Groot Letaba Catchment. If one adds the water required in the Middle Letaba Catchment and by Polokwane, which lies outside the catchment, a total of 49.2 Mm³/a is required.

	Place Name	Water Requirement in Mm ³ /a					
Description		Usage 2000	Allocation 2006/7	Usage 2006/7	Base Value used for WRYM	Base value used for Future Projections	
	Haenertsburg	0.04	0	0	0	0	
	Tzaneen Town	5.5	2.4*1+1.2*2 = 3.6	2.2+1.0 = 3.2	2.4+1.2 = 3.6	3.6	
	Politsi	0.14		2.1	2.0	2.0	
	Duiwelskloof	0.41	2.0				
	Ga-Kgapane	0.35					
Domestic use and requirements in Groot Letaba Catchment upstream of	Letsitele	0.26	0.4	0.3	0.3	0.3	
confluence with Klein Letaba River	Ritavi 1	0.73	0	1.9	1.9	1.9	
	Ritavi 2	2.66	3.5	8.2	8.2	8.2	
	Naphuno	1.30	1.7	1.3	2.9 * ³	1.3	
	Bolobedu	2.56	0.2	0.2	5.1* ⁴	0.2	
	Namakgale	Groundwater*5	0	0.8	0.8	0.8	
	Sub total	13.95	11.4	18.0	24.8	18.3	
	Giyani *6	0.98	3.7	3.7	3.7	3.7	
Domestic use in Middle and Klein Lateba Catabaante	Cumulative Sub-total	14.93	15.1	21.7	28.5	22.0	
	Middle Letaba Dam WTW	-	2.3	2.3	2.3	2.3	
	Sub-total	-	6.0	6.0	6.0	6.0	
Cumulative Sub-total	-	17.4	24.0	30.8	24.3		
Domestic use outside of Letaba Catchment	Polokwane		18.5	4.6+18.8=23.4	6.5* ⁷ +12* ⁸ =18.5	23.4	
Sub-total for Domestic use			35.9	47.4	49.3	47.7	
Industrial use		-	3.3	1.5	1.5	1.5	
Total primary water requirements			39.2	48.9	50.8	49.2	

Table 3.1 Primary Water Requirements (Table 12 from Urban-Econ Report in Appendix B) from the Letaba Catchment

*1 From Ebenezer Dam

*2 From Tzaneen Dam

*3 Based on Historical Firm Yield for Thabinia Dam
*4 Based on Historical Firm Yield for Modjadji Dam.

*5 Groundwater was used exclusively until 2006/7 when groundwater was supplemented with surface water from Tzaneeen Dam

*6 Giyani obtains water from both the Groot Letaba River and the Middle Letaba River, and was therefore included in domestic requirements of the Groot Letaba Catchment. *7 From Dap Naude Dam

*8 From Ebenezer Dam

3.1.2 Greater Tzaneen Local Municipality

The location of the Greater Tzaneen Local Municipality is shown on **Figure 2.1**, and the main settlements are listed in **Table 3.2**.

 Table 3.2
 Settlements in the Greater Tzaneen Local Municipality

Settlement						
Tzaneen Town	Mapitlula	Musiphana East				
Babanana	Marironi	Musiphana West				
Bokuta	Mavele	Nkamboko				
Botludi	Mawa 12	Nwamitwa				
Fobeni	Mawa 8	Pjapjamela				
Fofoza	Mawa 9	Relela				
Gamokgwathi	Mbekwena	Rikhotso				
Ga-Wally	Miragoma	Rikhotso North				
Jokong	Moleketla	Runnymede				
Jopi	Mookgo 6	Ruwanda				
Ka-Mswazi	Mookgo 7	Semarela				
Ka-Xihoko	Mofapalala	Senakwe				
Kobjana	Moruji	Seopeng				
Lerejene	Morwashetla	Serolorolo				
Lwandlamuni	Mothoment	Sethone				
Mabyepelong	Motupa	Thako				
Madumane	Мроруе	Thapane				
Mandlakazi	Mugwazini					

Source : DWA. EVN, Urban-Econ, 2007

Current Population

The population of the Greater Tzaneen Local Municipality was 375 587 in 2001, which is 45% of the total population of the Groot Letaba Catchment of 834 975 in 2001 (Urban-Econ Report; SA Statistics 2001 Census). This information is given in **Table 3.3** (reproduced Table 2 from the Urban-Econ Report).
District	1996	2001	Growth Rate 1996 to 2001	2007
Limpopo Province Total	4 520 529	4 995 533	2.02%	5 632 403
Mopani District Municipality Total	956 352	1 061 454	2.11%	1 203 125
Greater Giyani LM Total	217 442	239 283	1.93%	268 364
Greater Letaba LM Total	202 069	220 105	1.72%	243 819
Greater Tzaneen LM Total	340 321	375 587	1.99%	422 723
Ba-Phalaborwa LM Total	107 813	131 092	3.99%	165 778
Maruleng LM Total	87 355	94 385	1.56%	103 571
Kruger Park North LM Total	1 353	1 002	-5.83%	699
TOTAL SUB-AREA of Greater Giyani + Greater Letaba LM + Greater Tzaneen LM	759 832	834 975	1.90%	934 800

Table 3.3Population distribution for relevant local municipalities in the
secondary study area

Source : Urban-Econ calculations based on Census 1996 and 2001 data, 2007.

The population in the Greater Tzaneen Local Municipality in 2007 was estimated to be 422 723 based on an annual growth rate of almost 2%.

The most recent estimation of the population in the Greater Tzaneen Local Municipality was 459 485 in 2007. This appeared in Section D2 of the latest *Water Services Development Plans 2008 for Mopani District Municipality* (Mopani WSDP, 2008). Of this, an estimated 34 900 live in the town of Tzaneen.

Current Water Requirements

The current day water requirements for the Greater Tzaneen Local Municipality are given in **Table 3.1**, along with those for other municipalities in the catchment. The section of **Table 3.1** relevant to the Greater Tzaneen Local Municipality is extracted here as **Table 3.4**.

	Water Requirement in Mm ³ /a							
Place Name	Usage 2000	Allocation 2006/7	Usage 2006/7	Value used as base value for Future Projections				
Haenertsburg	0.04	0	0	0				
Tzaneen Town	5.50	2.4+1.2 = 3.6	2.2+1.0 = 3.2	3.6				
Politsi	0.14							
Duiwelskloof	0.41	2.0	2.1	2.0				
Ga-Kgapane	0.35							
Letsitele	0.26	0.4	0.3	0.3				
Ritavi 1 *1	0.73	0	1.9	1.9				
Ritavi 2	2.66	3.5	8.2	8.2				
Naphuno	1.30	1.7	1.3	1.3				
Bolobedu *2	2.56	0.2	0.2	0.2				
Namakgale	Groundwater*4	0	0.8	0.8				
Sub total	13.95	11.4	18.0	18.3				
Giyani ^{*3}	0.98	3.7	3.7	3.7				

Table 3.4PrimaryWaterRequirementsfortheGreaterTzaneenLocalMunicipality

*1 Ritavi 1 is included in supply area for the proposed Nwamitwa Dam

*2 Part of Bolobedu falls outside of the Greater Tzaneen Local Municipality. It is also included in supply area for the proposed Nwamitwa Dam

*3 Giyani obtains water from both the Groot Letaba catchment and the Middle Letaba catchment. Giyani is included in the supply area for the proposed Nwamitwa Dam.

*4 Groundwater was used exclusively until 2006/2007 when groundwater was supplemented with surface water from Tzaneen Dam

*5 Based on Historical Firm Yield for Thabinia Dam

*6 Based on Historical Firm Yield for Modjadji Dam

The town of Tzaneen has a total allocation of 3.6 Mm³/a. Part of this allocation (2.4 Mm³/a) is from Ebenezer Dam, and the rest (1.2 Mm³/a) from Tzaneen Dam. Their total usage in 2006/2007 was 3.2 Mm³/a, which is less than their total allocation. This is the most recent estimate obtained from the Greater Tzaneen Local Municipality, and is believed to be more reliable than the water use in 2000 of 5.5 Mm³/a, reported by Urban-Econ and repeated in **Table 3.4**. The water use for 2000 was obtained from the *"Luvuvu and Letaba Internal Strategic Perspective (ISP)"* (DWAF, 2007).

The settlement of Ritavi 2 used 8.2 Mm³/a in 2006/2007, which was more than double its allocation of 3.5 Mm³/a. The overall usage in the Greater Tzaneen Local Municipality, (2006/7) was 18.0 Mm³/a, which exceeds its total allocation of 11.4 Mm³/a, indicating that there is the need to increase the water supply to this Local Municipality. Part of Ritavi 1 and Bolobedu fall within the supply area of the proposed Nwamitwa Dam.

3.1.3 Ritavi 1 (area to be supplied by proposed Nwamitwa Dam)

The bulk water supply system serving the current Ritavi 1 area draws its water from a weir in the Great Letaba River. Raw water is pumped through a 300 mm diameter pipe to a raw water storage dam at Nkamboko WTW. The Nkamboko WTW currently has a capacity of 6 Ml/d ($2.2 \text{ Mm}^3/a$), and is in the process of being upgraded to a 12 Ml/d WTW ($4.4 \text{ Mm}^3/a$).

The bulk water supply system was first constructed in the period pre-1994, whereafter a significant number of upgrading and extension works have been undertaken to the system. The most recent of the extension works was the construction of a 5 Ml command reservoir at Serolorolo and a 315 mm diameter rising main from Nkamboko WTW to Serolorolo command reservoir. The 5 Ml command reservoir has, however, not been operational since construction due to a lack of supporting infrastructure.

No records of the flow leaving the Nkamboko WTW were available, but it is estimated that the current water usage is approximately 1.9 Mm³/a.

3.2 PROJECTED PRIMARY WATER REQUIREMENTS FOR THE GROOT LETABA CATCHMENT

The projected primary water requirements for the Groot Letaba Catchment, the Greater Tzaneen Local Municipality and Ritavi 1 (the area to be supplied by the proposed Nwamitwa Dam) are described below.

3.2.1 Groot Letaba Catchment

Future domestic water requirements for the Groot Letaba catchment were projected by Urban-Econ using three different methods, as described in Section 4 of **Appendix B**. A base water requirement of 22.0 Mm³/a in 2006/2007 was used as a starting point for all the projections. All three methods involved determining population growth rates and then using these growth rates to apply to the base value water requirements (**Table 3.1**) in order to project future water requirements up to 2030.

For the purposes of these projections, it is assumed that growth in Polokwane's requirements will be met from outside the Letaba Catchment, and that there is no growth in the industrial requirement.

(a) Method 1

The first method made use of a range of three population growth rates (low, medium and high) for the entire catchment as a whole. Pease refer to **Table 18** in **Appendix B** for the growth rates and projections used. The results of this method was to give a range of projected water requirements for the Groot Letaba in 2030, from 29.97 Mm³/a for the low growth rate, to 36.18 Mm³/a for the medium growth rate, to 46.98 Mm³/a for the high growth rate.

(b) Method 2

The second method made use of separate population growth rates for each main settlement area, and projected the growth in water requirements independently. Please refer to **Table 21** in **Appendix B** for the growth rates and projections used.

This method resulted in the water requirement for the Groot Letaba Catchment only increasing from 22.0 Mm³/a in 2007, by 12.31 Mm³/a to 34.31 Mm³/a, in 2030. This projected water requirement lies slightly below the medium growth scenario of Method 1. Method 2 was chosen to be the most representative of the three methods and was adjusted by adding more recent information as discussed in Section 3.2.1(d).

(c) Method 3

The third method was a combination of the two methods, using the "medium" growth rate from Method 1 to apply to each separate settlement area. As expected, this method came to the same result as for the medium growth scenario for Method 1 (see **Table 21** from the Urban-Econ Report in **Appendix B**).

(d) More recent estimates

During the course of the study, further estimates of future water requirements were made for the area around Nwamitwa Dam, based on more detailed work in the area (DWAF, 2008).

The more recent estimates resulted in considerably higher values for Ritavi 1 and Bolobedu (this includes Thapane, Modjadji and parts of the Worcester-Mothobeki and the Lower Molototsi areas) and Naphuno than are shown in **Table 3.6**. The higher estimates were added to the 2030 water requirements to get a total water requirement for 2030. The estimates assumed are for a high level of service, and are explained as follows :

Thapane	-	3.2 Mm ³ /a
Modjadji	-	6.44 Mm³/a
Worcester-Mothobeki	-	0.95 Mm³/a
Lower Molototsi	-	<u>0.92 Mm³/a</u>
Sub-Total		$\underline{11.51\ Mm^{3}\!/a}$ (11.35 Mm^{3}\!/a higher than the estimate of 0.16 Mm^{3}\!/a Bolobedu in Method 2)
Ritavi 1	-	5.2 Mm^3/a (3.17 Mm^3/a higher than the estimate of 2.03 Mm^3/a in Method 2)
Naphuno	-	2.9 Mm ³ /a (1.94 Mm ³ /a higher than the estimate of 0.96 Mm ³ /a in Method 2

Total recent estimate for Naphuno, Bolobedu and Ritavi $1 = 19.61 \text{ Mm}^3/a$ (2.9+11.51+5.2 Mm³/a) 16.46 Mm³/a higher than the estimate of 3.15 Mm³/a (0.16+2.03+0.96 Mm³/a) in Method 2.

Based on the above calculations, the additional annual water requirement based on the higher service levels is estimated to be $16.46 \text{ Mm}^3/a$. If this additional volume of $16.46 \text{ Mm}^3/a$ is added to the volume of $34.31 \text{ Mm}^3/a$ in 2030 obtained from Method 2, a total future water requirement of $50.77 \text{ Mm}^3/a$ is obtained. This figure falls above the high scenario projection for Method 1 of $46.98 \text{ Mm}^3/a$ in 2030.

The values discussed above are shown in **Table 3.5**, which brings together the Method 2 estimates from **Appendix B** and the additional volumes for certain areas from the more recent estimates.

(e) Summary

The three methods give a water requirement range of between 29.97 Mm³/a (Method 1, low scenario) and 46.98 Mm³/a (Method 2, high scenario) for the Groot Letaba Catchment in 2030. The water requirement for the medium growth scenario ranges between 34.31 Mm³/a (Method 2) and 36.18 Mm³/a (Method 1, medium scenario). If the more recent estimates for the area around the proposed Nwamitwa Dam are used, a total future water requirement of 50.77 Mm³/a is obtained, which is closer to the high scenario of 46.98 Mm³/a. It is recommended that the higher value of 50.77 Mm³/a be used for the purposes of this study.

The results of the water requirement projections provided by using all three methods indicate an ever-increasing population which translates directly into an increased requirement for water. Bearing in mind that the current water supply schemes are largely over-allocated, this indicates that the need to supply more water will continue to intensify in future.

	Annual				Water requirements in Mm³/a						
Domestic use	Percentage Growth ^{*1} Rate (%/a)	20)07 ^{*2}	20 (Met	030 ^{*2} thod 2)	Growth between 2007 and 2030 (Method 2)	Additional growth due to increased service levels	Total future growth	Future estimate 2030 (recommended)		
Haenertsburg	5.92		0.0	(0.00	0.00		0.00	0.00		
Tzaneen	6.84		3.6	1	6.49	12.89		12.89	16.49		
Politsi	0.00	0.31		0.31							
Duiwelskloof	5.08	0.91	2.0	2.85	3.38	1.38		1.38	3.38		
Ga-Kgapane	-5.32	0.78		0.22							
Letsitele	5.39	(0.3	1	1.00	0.70		0.70	1.00		
Ritavi 1 * ³	0.28		1.9	2	2.03	0.13	3.17	3.30	5.20		
Ritavi 2	-2.31	8	8.2	2	4.79	-3.41		-3.41	4.79		
Naphuno * ³	-1.33		1.3	(0.96	-0.34	1.94	1.6	2.90		
Bolobedu * ³	-1.06	(0.2	(0.16	-0.04	11.35	11.31	11.51* ⁴		
Namakgale	Groundwater	(0.8	(0.80	0.0		0.0	0.80		
Sub-total (excl. Giyani)	0.27	1	8.3	2	9.61	11.31	16.46	27.77	46.07		
Giyani	1.05	:	3.7	2	4.70	1.0		1.0	4.70		
TOTAL	1.32		22.0	3	4.31	12.31	16.46	28.77	50.77		

Table 3.5 Projected Water Requirements in 2030 using Method 2 (Table 21 from Urban-Econ Report in Appendix B)

(Source: *1 Urban-Econ Calculations from DWA statistics

*2 Urban-Econ Calculations using DWA population growth rates and demands used in Bridging Study)

*3 Note that updated estimates (DWAF, 2008) show higher growth rates for these three areas

*4 This figure for Bolobedu is made up of the following areas: Thapane (3.2 Mm³/a) + Modjadji (6.44 Mm³/a) + Worcester-Mothobeki (0.95 Mm³/a) + Lower Molototsi (0.92 Mm³/a) = 11.51 Mm³/a.

3.2.2 Greater Tzaneen Local Municipality

As mentioned previously, the most recent estimation of the population in the Greater Tzaneen Local Municipality was 459 485 in 2007 (Mopani, 2008 WSDP). The population projections for this local municipality are given in **Table 3.6**.

Table 3.6Present and projected population in the Greater Tzaneen LocalMunicipality

Year	Population Estimation/Projection
2007	459 485
2017	504 489
2027	549 763

Source : Mopani WSDP 2008. Section D2)

These populations projections were made using annual population growth rates ranging from 1.009% per annum in 2026, to 1.017% per annum in 2004 (Ref : Section 1.1.1.3 of 2008 Mopani, WSDP). The range of growth rates used by Urban-Econ varied from 1.3% (low) to 3.3% (high). Please refer to **Table 16** in **Appendix B**.

Actual water requirement figures for the town of Tzaneen for the period 1976 to 2007 are shown in **Figure 3.1**. The Municipality advised against using the water consumption figures pre-1997 as there was a concern about the accuracy of this information. For the period 1997 to 2003, the annual growth in water requirement averaged at approximately 7.8 % per annum. The average growth rate for the period 2004 to 2007, was 3.65% per annum. The growth in water requirement for Tzaneen Municipality suggested by Urban Econ is 6.84% per annum (see **Table 3.5** of this report). Given the recent water restrictions in the area it is difficult to ascertain the actual unrestricted water requirements as well as the future projected growth in water requirement.

3.2.3 Ritavi 1 (area to be served by the proposed Nwamitwa Dam)

EVN were appointed by DWA Limpopo Regional office to undertake a water services planning study to determine the future water requirements, potential supply zone and connector bulk infrastructure required for the area to be supplied from the proposed Nwamitwa Dam. The GLeWaP Report: *Bulk Water Distribution Infrastructure* details the outcome of this investigation. The GLeWAP 2027 *High Service Level Scenario Water* Requirement figures, received from EVN, were used to determine the 2027 infrastructure requirements and have also been included in this section of the report to give an indication of the possible future potential primary water requirement from Nwamitwa Dam. The High Service Level Scenario was chosen as the basis upon which to design the future infrastructure requirements as this represents the Water Service Authorities ultimate goal of providing water to each household as opposed to the current system of communal stand pipes.

The supply systems (sub-systems) which are to be supplied by the proposed Nwamitwa Dam are:

- the Worcester-Mothobeki sub-system,
- the Lower Molototsi sub-system,
- parts of the Greater Giyani sub-system,
- the Ritavi/Letaba system (Letaba system), and
- the Thapane system

It is estimated that the 2027 water requirement (excluding the water requirement which can be supplied from Thapane Dam) to provide a high service level to the above mentioned sub-systems is approximately 11.2 Mm³/a (excluding bulk water supply losses). In addition to the 11.2 Mm³/a, the proposed Nwamitwa Dam may also have to supplement a water resource shortfall in the Modjadji system by approximately 1 to 2 Mm³/a. This could make the primary water requirement on the proposed Nwamitwa Dam to be in the order of 13 Mm³/a. Currently the water requirement in the Ritavi 1 area is 1.9 Mm³/a. The current water requirements for the other sub-systems are not known, as water requirement figures were not available. The proposed supply areas to be served by the proposed Nwamitwa Dam are shown in **Figure 3.2**, and the water volumes discussed above are summarised in **Table 3.7**.

Table 3.7PrimaryWaterRequirementsfromTzaneenandProposedNwamitwa Dam

	Source	Current Usage (Mm ³ /a)	Addition	al Require (Mm³/a)	ment	Total Future Requirement (Mm ³ /a)
	Tzaneen Dam (includes Ritavi 1)	13.9* ¹	(12.89	10.18 (12.89 – 3.41 + 0.7)* ²		
	Nwamitwa Dam		Ritavi 1	5.2		
re sources	(excludes current groundwater use)		Thapane (excludes Thapane Dam)	1.8		
Existing and futu		Worcester Mothobeki	0.95	±13	±13	
		Lower Molototsi	0.92			
		Giyani	2.29			
			Deficit in Modjadji	1 to 2		
TOTAL					23.18	35.18

*1 Includes Ritavi 1

*2 See Table 3.5

*3 Ritavi 1 useage to be supplied by proposed Nwamitwa Dam in future

3.2.4 Future Mining Developments

The potential future mining developments identified during the course of the study are described below. These new developments will require an estimated total of 21 Mm³/a. None of these potential water requirements were included in this Bridging Study, as it is expected that they will need to be supplied from outside of the Groot Letaba Catchment.

(a) Gravellotte Heavy Minerals Mine

There are plans to start a new mine in 2014, with a lifespan of at least 10 years. The mine would be located on portions of the following farms: Rubbervale, Quagga, Gravelotte, Mon Desir, Solomons Mine, Free State and Begin. The water requirement is estimated to be 5 Mm³/a. (source: e-mail correspondence between Hendrik Graham (Exxaro Resources) and Hermien Pieterse (BKS) dated 30 January 2008, and 15 February 2008).

(b) Tivani Mine (Red River Mining Project)

There are plans to start a new mine in 2010, beginning production in 2012. The mine would be located approximately 25 km south-east of Tzaneen Dam at Mohlaba's location (567LT). The water requirement is estimated to be 1 Mm³/a during construction and 13 Mm³/a during production (previously estimated at 8.3 Mm³/a). The developers expect that this water will be supplied from the Groot Letaba River or the Phalaborwa barrage (or Lepelle North). Limited use of groundwater will be possible during construction. During production, some water will be sourced from mine dewatering and local runoff. The potential for use of treated effluent from Tzaneen Municipality will be investigated. The mine will utilise water reclamation and re-use procedures to the maximum (Source: e-mail correspondence between Jon van Zetten (developer) and Hermien Pieterse (BKS), dated 1 and 12 February 2008).

(c) Expansion of existing mine by Metorex Group

There are plans to expand the existing mine on the farm Josephine, 9 km from Gravelotte, beginning immediately, with the expansion being complete in 2009. The water requirement is estimated to be 2.5 m³/s in 2008, and 3 m³/s in 2009. This water requirement includes water that will be provided to Gravelotte, farmers, and 600 RDP houses in addition to water required by the mine. The developers expect that this water will be supplied from the current abstraction points on the Groot Letaba River and 6 km downstream of Nwamitwa (Source: e-mail correspondence from Hermien Pieterse (BKS), dated 1 February 2008, documenting a discussion held with Mr Allen Dodds of Metorex Group).

		Water Requirements in Mm ³ /a							
Description	Place Name	Allocation 2006/7	Usage 2006/7	Base Value used for Future Projections ^{*1}	Estimated Growth to 2030	Total Future Water Requirements (2030)			
(Domestic use in Groot Letaba catchment	Haenertsburg	0.0	0.0	0.0	0.0	0.00			
upstream of confluence with Klein Letaba River	Tzaneen Town	3.6	2.2 + 1.0 = 3.2	3.6	12.89	16.49			
	Politsi	2.0	2.1	2.0	1.38	3.38			
	Duiwelskloof								
	Ga-Kgapane								
	Letsitele	0.4	0.3	0.3	0.70	1.00			
	Ritavi 2	3.5	8.2	8.2	-3.41	4.79			
	Naphuno	1.7	1.3	1.3	1.60	2.90			
	Namakgale	0.0	0.8	0.8	0.00	0.80			
	Ritavi 1	0.0	1.9	1.9	3.30	5.20			
	Bolobedu	0.2	0.2	0.2	11.31	11.51			
	Sub-total	11.4	18.0	18.3	27.8	46.07			
Domestic use in Middle and Klein Letaba	Giyani * ³	3.7	3.7	3.7	1.0	4.7			
Catchments	Cumulative Sub-total	15.1	21.7	22.0 * ²	28.8	50.8			
	Middle Letaba Dam WTW	2.3	2.3	2.3	No estimate made*3				
	Sub-Total	6.0	6.0	6.0	-				
Cumulative Sub-total		17.4	24.0	24.3					
Domestic use outside of Letaba Catchment	Polokwane	18.5	4.6 + 18.8 = 23.4	23.4	No estimate made*3				
Sub-total for domestic use		35.9	47.4	47.7					
	Industrial use	3.3	1.5	1.5* ²					
Overall total of primary water requirements		39.2	48.9	49.2					

Table 3.8 Summary of Current and Projected Primary Water Requirements

*1 Note that where the base value differs from the allocation in the previous column, this was based on actual water usage in 2006/7

*2 Current day primary water requirement for Groot Letaba Catchment = 23.5 Mm³/a (22.0 Mm³/a domestic + 1.5 Mm³/a industrial)

*3 Growth in water requirements to be met from outside Letaba catchment

3.3 SUMMARY OF PRIMARY WATER REQUIREMENTS

The existing and future primary water requirements in the study area are summarised in **Tables 3.8** and **3.9**. **Table 3.8** contains estimates for those future requirements that are expected to be met from the Groot Letaba Catchment. The future mining requirements are summarised separately in **Table 3.9** because it is anticipated that they will be supplied water from outside of the Groot Letaba Catchment.

A table summarising the water use, allocations and yields from existing sources and the possible future water requirements up to 2030 is provided in **Section 7.1 (Table 7.2)**. The additional water use required by the year 2030, based on the projections by Urban Econ, EVN and information received from possible future developments, amounts to an additional volume of 23.18 Mm³/a, as shown in **Table 3.8** in **Section 3.2.3**.

Table 3.9	Summary of Water Requirements of Potential New Mines
-----------	--

Source	Potential Future Water Requirement (Mm ³ /a)
Tivani Mine	13
Gravelotte Heavy Minerals Mine	5
Expansion of existing Metorex Mine	3
Total	21

4. IRRIGATION REQUIREMENTS AND LOSSES

4.1 IRRIGATION REQUIREMENTS

A significant portion of the irrigation requirements in the study area (90.5 Mm³/a excluding losses) is controlled by the Groot Letaba Water Users Association (GLWUA), which obtains its water from Tzaneen Dam. The remaining irrigation requirements (124.5 Mm³/a including losses) are those of individual users who obtain the water from farm dams and rivers. They are not controlled by a specific Water User Authority (WUA). The irrigation requirements were analysed according to these two categories, and are also reported on in this way.

The two categories of users have different conditions of supply which affects the calculation of water allocated, specifically regarding losses. Transition losses are allowed for as part of the allocation to the GLWUA, and these are estimated in Section 4.2. It is assumed that the irrigation requirement for individual users including losses (i.e. gross requirement).

The irrigation requirements were deteremined based on a number of different sources of data which are listed below:

- An initial study of a general nature undertaken by Schoeman & Vennote of the irrigation taking place in the Groot Letaba Catchment. This did not form part of this Bridging Study. The report is entitled *Groot Letaba River Catchment, Section 9B* (1c) Abstraction and Storage Control, Field Survey (DWAF, 2007).
- The second study by Schoeman & Vennote which was commissioned as part of this Bridging Study. The outcome of this study is documented in a report entitled *Groot Letaba Study : Irrigation Assessment*, and contains a detailed field survey of the irrigated areas and storage on each of the erven in the Great Letaba River Catchment. A copy of this report is contained in **Appendix C**.
- Other sources, for example white papers, documentation from WUA's and the DWA.

The available data was analysed and a representative data set of present day irrigation requirements was built up. This was a complex process and assumptions were necessary in order to reconcile the different sources of data. Detailed information regarding the process followed and assumptions made are provided in **Appendix D**, mainly for future studies which will require this information. The results of the analysis and the data set decided upon are presented in this section.

33

The distribution of the irrigated areas and the relative proportion supplied from groundwater, the GLWUA and from other sources (recycled water and municipal sources) is illustrated schematically in **Figure 4.1**.

The application rate for crops in the Groot Letaba varies significantly from the cooler regions upstream of Tzaneen Dam down to the high evaporation areas of the lowveld. The scheduled application rate has been divided into three zones of 662, 892 and 1 090 mm/a. According to White Paper J of 1971, these rates are gross rates including an allowance for river channel/transmission losses and the field edge application rates are about 77% of the gross application rate. Though the White Paper is dated 1971, the application rates and allocated hectares form the basis for water allocation in the catchment and are still quoted by the irrigators and by DWA officials managing the system. The allocations to different consumers from Ebenezer and Tzaneen Dams are summarised in **Table 4.1** entitled Agricultural water allocations from the Government Water Supply Scheme in the Groot Letaba Catchment.

Using the application rates from the White Paper, and the current scheduled areas, the gross allocation of the GLWUA is 118 Mm³/a (see **Table 4.1**). Factoring the gross requirement by 77% gives the field edge requirement of 90.5 Mm³/a, allowing for losses of 23% or 27.5 Mm³/a.

			Are	Allocation Mm³/a (including losses)					
	Ebenez	er Dam	T	Tzaneen Dam					
Consumer	Rainfa	II zone	Rainfa	all zone		Total			
	1	2	1	2	3		Ebenezer	Tzaneen	Total
			Applicatio	on rate m ³ /ha	L				
	6 620	8 920	6 620	8 920	10 900				
Georges Valley Canal	389.2					389.2	2.6	0.0	2.6
Pusela Canal	822.5	174				996.5	7.0	0.0	7.0
N&N Canal				224	937.7	1 161.7	0.0	12.2	12.2
Letaba North Canal				2 240.1	809.5	3 049.6	0.0	28.8	28.8
River Pumps	515.9		199.4	512.7	2 346.4	3 574.4	3.4	31.5	34.9
Ledzee Canal				134.5			0.0	1.2	1.2
Dept Land Affairs				277.7	2 647.5	2 925.2	0.0	31.3	31.3
Total	1 727.6	174	199.4	3 389.0	6 741.1	12 096.6	13.0	105.0	118.0

Table 4.1Agricultural water allocations from the Government Water SupplySchemes in the Groot Letaba Catchment

Ref: I:\HYDRO\401775\WRYM\INPUTS\Fixed Irrigation Area Recordsva.xls sheet "allocation".xls

The total demands of the GLWUA are estimated to be 90.5 Mm³/a and the total demands of the local irrigators are estimated to be 124.5 Mm³/a, giving a total irrigation requirement of 215 Mm³/a. These irrigation demands are asummarised in **Table 4.2**. A detailed breakdown of the irrigation demands in the Letaba is presented in **Appendix D**, mainly to assist further analysis of the demands in further studies.

Another breakdown, indicating the river reaches where the irrigation demands apply in the WRYM, is included in the *Water Resource Analysis* Report (DWA, 2010b) in the table describing the inflows and demands used in the present day analysis of the Letaba Catchment.

Differences in irrigation demands were found when the results of the 1995 Feasibility Study was compared to the 2007 Bridging Study Analysis. These are listed below:

- The local demands supplied upstream of Tzaneen Dam increased by 8 Mm³/a.
- Increase of 29 Mm³/a along the Groot Letaba River from Tzaneen Dam to the Letaba Ranch. Part of this increase was as a result of incorporating the proposed (as opposed to existing) supply of 22 Mm³/a to emerging farmers downstream of the

Nondweni Weir. The Feasibility Study reported that 7.9 Mm³/a was supplied to the Masalal canal but this has not been maintained and is now unusable.

Description	Field edge requirement (excluding losses) Mm3/a					
Description	Local Users	GLWUA	TOTAL			
Groot Letaba Catchment	73.1	90.5	163.6			
Middle Letaba	37.4	N/A	37.4			
Klein Letaba	14.0	N/A	14.0			
Grand Total	124.5	90.5	215.0			

The areas irrigated by boreholes were provided by the Schoeman & Vennote study (**Appendix C**). The same reduced irrigation application rates determined for the GLWUA were applied to these areas. These reduced application rates reduced the supply from boreholes from the 3.29 Mm^3 /a reported in the Schoeman & Vennote report to 29 Mm^3 /a (see **Table 4.3**).

Table 4.3	Irrigation	supplied	from	groundwater	in	the	Groot	Letaba
	Catchmen	t (excludin	g the P	olitsi GWCA)				

Sub-quaternary/quinary	Area irrigated from boreholes (ha)	Application rate scaled to obtain correct field edge allocation for the GLWUA (m ³ /ha)	Requirement from boreholes (Mm³/a)
A01	0	426	0.0
A10		426	0.0
B01	221	426	0.9
B10	0	426	0.0
B12	8	426	0.0
B14	1	426	0.0
B16	3	426	0.0
B20	16	426	0.1
B30	96	426	0.4
C01	1	574	0.0
C10	379	574	2.2
C15	63	574	0.4
D01	4	574	0.0
D10	9	574	0.1
D13	6	574	0.0
D16	25	574	0.1
D28	19	574	0.1
E01	427	574	2.4
E10	136	701	1.0
E20	244	701	1.7
E23	105	701	0.7
E25	473	701	3.3
E30	45	701	0.3
F01	156	701	1.1
F10	55	701	0.4
F20	270	701	1.9
F30	1197	701	8.4

Sub-quaternary/quinary	Area irrigated from boreholes (ha)	Application rate scaled to obtain correct field edge allocation for the GLWUA (m³/ha)	Requirement from boreholes (Mm³/a)
G01	338	701	2.4
G10	4	701	0.0
H01	63	701	0.4
H10	53	701	0.4
J01	23	701	0.2
J10	0	701	0.0
Total	4439		29.0

4.2 LOSSES

The Kruger National Park (KNP) is located at the lower end of the Groot Letaba Catchment and the impact of any upstream development on the KNP must be considered. The losses that will be incurred by releases intended for the KNP were estimated using the decrease in streamflow occurring between the Letaba Ranch (B8H008) (**Figure 4.2**) and the Black Heron Weir (B8H034) (**Figure 4.3**) in the Groot Letaba River. Both of these weirs have low flow notches to improve the accuracy of low flow measurement. The losses vary significantly, depending on the antecedent flow conditions. The Black Heron Weir also measures the contribution from the Klein Letaba River. The gauge on the Klein Letaba (B8H033) is 100 km from the Black Heron Weir and, for the purposes of this analysis, periods when this contribution (shown in green) were minimal were selected. The portions of record selected for further analysis are shown in red on **Figure 4.4**. The decrease in flow during the selected period was approximately 0.185 m³/s over the 26 km stretch, or 0.0071 m³/s/km.

Table 4.4 shows how the lengths of the different reaches and the loss per km were used to estimate the losses along each river reach. In some cases, such as the reach from Tzaneen Dam to the Letsitele confluence, the river bed is relatively narrow and rocky and the losses were reduced accordingly. Most of the data in **Table 4.4** was extracted from the *Basin Study Report: Annexure 17 Water Losses* (DWAF, 1990b) or from Google Earth.

The losses for the portion from Tzaneen to Letaba Ranch (about 0.814 m³/s or 25.6 Mm³/a) are similar to the scheduled allowance for losses described in White Paper 71J. The losses downstream of the Letaba Ranch are not caused by irrigation releases but by trying to meet EWR requirements in the KNP.

The losses determined in this manner correspond to losses measured during periods of low flow. The yield of the system is affected by the average losses over the critical draw-down period. Analyses were completed assuming that the average loss rate was some factor of the loss measured during periods of low flow. The factors used varied between 0.0, 0.5 and 1.0.

When determining the losses relevant to irrigators it was assumed that the canal seepage losses and irrigation return flows were of the same magnitude and could be ignored.

The losses are substantial and are estimated to range from zero to a maximum of 76.1 Mm³/a for the Letaba River up to its confluence with the Olifants River. The assumptions used to estimate these losses are very important as they have a significant effect on the yields of the dams in the system.

The losses for the catchment of the Groot Letaba River up to the Letaba Ranch (flow gauge B8H008) are estimated to be 28.7 Mm³/a. If one adds this to the estimated field edge irrigation requirement (i.e. excluding losses) of 163.6 Mm³/a mentioned earlier (**Table 4.2**), the total irrigation requirement (including losses) for the Groot Letaba Catchment is estimated to be 192.3 Mm³/a.

Figure 4.2 Letaba Ranch Weir (B8H008)

Figure 4.3 Black Heron Weir (B8H034)

Figure 4.4 Observed losses between Letaba Ranch (B8H008) and Black Heron (B8H034) weirs

Deeeh	Channel	$Slame (4 in)^{1}$	Distance ¹	Longth footor	Effective	Combined	Channel	Vegetation	WRYM	Loss	
Reach	material	Slope (1 In)	(km)	Length factor	length	lengths	width 1	width	number	(m³/s)	(Mm³/a)
Column a	b	с	d	е	f=d*e	g	h	i	j	k=f*0.0071m ³ /s/km	I
Upstream of Tzan	een Dam – ass	umed value								0.095	2.996
Tzaneen to Letsitele	rocky	150	37	20%	7.4		3-15	100			
Letsitele to Nwandezi	sand	400	21	100%	21	35	10-50	150	568	0.252	7.947
Nwanedzi to Nwamitwa	sand	600	7	100%	7		10-30	100-200			
Namitwa to Prieska Weir	sand	600	28	100%	28	28	30-60	100-300	430	0.199	6.276
Prieska Weir to Molototsi	sand	600	35	100%	35	51	10-30	100-200		0.262	11 //0
Molototsi to Letaba Ranch	3m sand	750	16	100%	16	51	30-60	100-300	473	0.000	11.440
Sub-total for Groot	Letaba Catchme	ent (losses affecting (GLWUA)							0.909	28.7*
Letaba Ranch to Klein Letaba confluence	3m sand	750	15	100%	15	26	30-60	100-300	582	0.107	3.374
Klein Letaba confluence to Black Heron Weir	3m sand	750	11	100%	11	20	assumed 30-60	assumed 100-300	591	0.078	2.460
Klein Letaba River from B8H033 to confluence	sand	700	100	100%	100	100	30-60	100-300	669	0.712	22.454
Black Heron to EWR 6	unknown	727	22	100%	22	22.1	assumed 30-60	assumed 100-300	688	0.157	4.951
EWR6 to EWR 7	unknown	727	23	100%	23	23	assumed 30-60	assumed 100-300	689	0.164	5.172
EWR7 to Olifants confluence	unknown	727	40	100%	40	40	assumed 30-60	assumed 100-300	690	0.285	8.988
Sub-total downstre	am of the Groot	Letaba Catchment								1.503	47.4
Total			355		286	-				2.412	76.1

Table 4.2 Estimating River Channel Losses for Reaches along the Letaba River

Extracted from Tzn15.xls sheet "GrossLosses (2)"

* Estimated gross irrigation requirement (including river channel losses) for the Groot Letaba Catchment is 163.6 (from Table 4.2) + 28.7 = 192.3 Mm³/a * Estimated gross irrigation for the Groot, Middle and Klein Letaba Catchments is 215.0 (from Table 4.2) + 28.7 = 243.7 Mm³/a.

5. AFFORESTATION

5.1 INTRODUCTION

Significant areas of exotic plantations (afforestation) and some indigenous forests occur in the wetter parts of this study area, mainly in areas with an average MAP of around 900 mm. These areas are concentrated in the upper reaches of the Groot Letaba, Letsitele, and Middle Letaba and Klein Letaba River Catchments. Afforested areas are planted with mainly gum tree species (*Eucalyptus*), with pine tree species (*Pinus spp*) being planted to a lesser extent. In the previous studies, the areas covered with forest in 1925 were assumed to be indigenous forests, since the afforestation industry only began to grow significantly from 1930 onwards.

There is very little likelihood of further development of afforestation in the catchment, since the Letaba Catchment was categorised as "Category 1" in terms of the 1984 Forestry Act (Act 122 of 1984), which implies that new licences will not be permitted in the catchment (DWA, 1998). This happened as far back as 1972.

Updated information on the forestry areas (indigenous and afforested) and the growth of the areas was obtained from Schoeman & Vennote. Please refer to their report which is contained in **Appendix C**.

The areas of afforestation in the catchment for 2005 conditions were obtained by marking up areas under plantations on the 2005 aerial photographs. The type of trees in each area was also noted, and these areas were digitised to provide a 'time slice' of information regarding the extent of afforestation in the catchment for 2005. This 2005 time slice was used as input to the rainfall-runoff model to generate a time series of monthly water use by that area of afforestation. In some areas of the catchment, up to date aerial photography was not available, for example the Middle Letaba and Klein Letaba catchments. Satellite images of these areas were obtained, and it was evident from these that not much development had taken place since the Basin Study (1990). So for these catchments, the areas of afforestation in 2005 were assumed to remain at the levels for 1990 used in the Feasibility Study.

The areas of afforestation in 2005 that were used for modelling purposes in this Bridging Study are summarised in **Table 5.1**. It should be noted that the final areas of afforestation adopted in the Bridging Study differ in some cases from those provided by Schoeman & Vennote in order to be compatible with the existing hydrology which was

being extended.

The total afforestation area modelled in the B81 catchment in the Bridging Study has 283 ha, compared to the area of 344 ha provided by Schoeman & Vennote. The differences were concentrated in the quaternary sub-catchments B81B and B81C. This difference should be investigated when the hydrology is revisited.

Quaternary		Total affores	ed area (km²)				
drainage region	Provided by Schoe	man & Vennote	Total area modelled in Bridging Study				
B81A	95.6		95.5				
B81B	177.0		103.17				
B81C	10.5		27.5				
B81D	38.4		34.5				
B81E	17.2	344	17.2	283			
B81F	0.0		0				
B81G	5.6		5.6				
B81H	0.0		0				
B81J	0.0		0				
B82A			4				
B82B			17				
B82C			28				
B82D			7				
B82E	Not avai	lable	11	75			
B82F			7.5				
B82G			0				
B82H			0				
B82J			0				
B83B			0				
B83C			0				
B83D	Not avai	lable	0	0			
B83E			0				
Sub-total B83 A-E			0				
Total	Not avai	lable	358				

Table 5.1 Afforestation Areas in the Letaba Catchment for 2005

5.2 AFFORESTATION WATER USE

The water requirements of afforestation modelled in this Bridging Study were compared to the afforestation requirements from the previous study. This comparison is summarised in **Table 5.2**. In most sub-catchments, there were differences in the

average afforestation requirements between the two studies. The Bridging Study afforestation requirements were adjusted in order to match the afforestation requirements in the previous study, so that the average flows for the common period would remain the same.

	Afforested area in 2005	Water use by (Mm	afforestation ³ /a)	Factor used to adjust Bridging	Water use by afforestation (Mm³/a			
Sub-catchment Name	used in Bridging	Pre-feasibility Study (SSI)	Bridging Study	Study results to match pre-	Bridging Study after adjustment			
	Study (km²)	(1925-1987)	(1925 - 1987)	feasibility results	1925 -1987	1925 - 2004		
B8R001 – Ebenezer Dam catchment	95.5	11.2	6.2	1.8	11.2	15.0		
B8R005 – Tzaneen Dam catchment	103.2	29.7	22.7 (incl B81B)	1.3	29.7	40.1		
BH009 and B8H010	62.0	7.4	8.9	0.8	7.4	10.1		
B8H017	17.2	2.8	1.7	1.6	2.8	4.2		
B8H008	5.6	0.0	0.5	1.0	0.0	0.0		
Ungauged sub-catchment downstream of B8H008 to confluence with Klein Letaba (J01)	0.0	0.0	0.0	1.0	0.0	0.0		
Middle Letaba	74.5	5.7	3.2	1.8	5.7	8.1		
Klein Letaba	0	0.0	0.0	1.0	0.0	0.0		
Groot Letaba downstream of confluence with Klein Letaba, to entry to KNP	0	0.0	0.0	1.0	0.0	0.0		
TOTAL	358.0	56.7	43.4	1.3	56.7	77.6		

 Table 5.2
 Summary Water Use by Afforestation

In most cases, the adjustments increased the water use by afforestation, giving an overall increase of $13 \text{ Mm}^3/a$.

The final volumes of current day (2005) water use by afforestation used in the Bridging Study are also summarised in **Table 5.2**.

6. ECOLOGICAL RESERVE

In 1994/1995 EWR sites were selected. Their positions are shown on **Figure 6.1**. The following were adhered to in selection of these sites:

- the locality of gauging weirs with good quality hydrological data
- the locality of the proposed developments
- the locality and characteristics of tributaries
- the habitat integrity/conservation status of the different river reaches
- the reaches where social communities depend on a healthy river ecosystem
- the suitability of the sites for follow-up monitoring
- the habitat diversity for aquatic organisms, marginal and riparian vegetation
- suitability of the sites for accurate hydraulic modelling throughout the range of flow, especially low flows
- accessibility of the sites

Some adjustments were made in 1996 and again during the Reserve Determination Study, with regard to the actual location of the EWR sites, in consideration of the hydraulics at representative cross-sections. An additional two sites, one between Ebenezer and Tzaneen Dams on the Groot Letaba River and the other downstream of the confluence of the Middle and Klein Letaba Rivers, were selected during the Reserve Determination Study.

Hydrology at EWR sites

Each quaternary catchment was split into relevant sub-catchments in order to apportion natural runoff at the individual EWR sites.

Present day hydrology

Comparison of the natural and present flow gives a clear indication of the impact of the water resources development. Agriculture and domestic use are the major demand sectors in the system. The decline in present day flow, when compared to the natural flow, is mainly attributed to the large demand of irrigation in the Groot Letaba Catchment and Middle and Klein Letaba sub-catchments. According to the Letaba Reserve Determination Study (DWAF, 2006c), 14.8 Mm³/a (0.47 m³/s) was allocated from Tzaneen Dam and Nondweni weir to regulate the release. Of this, 6.06 Mm³ was abstracted downstream for domestic use. The remaining 8.74 Mm³ flowed to the KNP.

In 2007, the dam operator made an allowance of 0.6 m^3 /s (18.9 Mm³/a) from Tzaneen Dam for the KNP, so it seems that the KNP release has been increased. It is not clear however whether this release is made every year, or whether it was reduced during drought periods.

The Letaba Catchment Reserve Determination Study was commissioned because of the water stress in the Letaba Catchment. An outcome of this study was the development of the Preliminary Reserve for the catchment. It should be noted that the study did not take into account the proposed Nwamitwa Dam. A separate Reserve Determination Study for Nwamitwa Dam needs to be undertaken.

The ecological water requirements at key sites along the Groot Letaba River determined during the Reserve Determination Study are summarised in **Table 6.1** columns b, c and d summarise natural flow and the associated EWR supplied at the seven sites along the Letaba River. When the rule specifying the ecological requirements was modelled in the WRYM, slightly different ecological requirements were generated, as can be seen in column j. This is partly because the hydrology was updated and because the WRYM version used for the initial analysis limited the number of nodes that can be used to determine the natural inflow used to generate the ecological requirement.

The older WRYM.exe obtained with the data file from SSI was used for the analyses to avoid the problems encountered when changing to a new executable. This executable limited the number of nodes that could be used to determine the natural inflow used to generate the ecological requirement. Problems were in fact experienced when the version of the WRYM was changed to 7.5 as this version did not interpret the switch to use natural/present day flows correctly.

EWR releases are derived from two sources: explicit releases and accruals from relatively unregulated rivers. The timing of the flows in the unregulated tributaries might not always coincide with the flows specified by the rule, though they would still provide a valuable ecological function. For instance, the rule might specify a high flow in February when the actual streamflows provide a high flow in January. As a result, the streamflows contributing to the environment might exceed the minimum specified requirements for a certain category.

In the Reserve Determination Study, a reduced ecological requirement (Scenario 7) was specified on the understanding that the shortfall in the rule would be made up from unregulated streamflows. It was also specified without the proposed Nwamitwa Dam in place, and therefore relied on the unregulated inflow from the Letsifele River. As mentioned earlier, a Reserve Determination Study still needs to be undertaken for the proposed Nwamitwa Dam. Column f in **Table 6.1** describes this optimised scenario and indicates where the requirements were reduced by adopting a lower class or omitting flood requirements. The extent to which various EWR scenarios, including the optimised scenario, satisfied the EWR is discussed in the **Appendix B**: "Details of compliance with EWR sites 3 - 7" in the *Water Resource Analysis* Report (DWA, 2010b).

Unfortunately, the rule used to generate Scenario 7 was not available in the WRYM and the following procedure was adopted to estimate these rules :

- Enter natural MAR and the total maintenance (high plus low flow) requirements into IFREDIT.
- Use RESDSS to generate the baseflow requirement rule
- Use the baseflow rule to generate an EWR sequence in the WRYM
- Compare the MAR of this generated sequence with the required MAR and factor the generated sequence accordingly (i.e. factor in column L of **Table 6.1**).

River channel losses may also impact on the volume of water that needs to be released for the Reserve.

		То	otal Requi	irement			Explicit supply – as toward the	sume accruals total requirem	s contribute ent			Bridging Study								
		Main Report (Table 11.1), Hyd Preliminary Reserve (Sectio						y support and 4) and Appen	water resource dix K	Natural MAR Total (Mm³/a)			EWR	s modelled (1925 – 198	in WRYM 6) *1					
							Optimised Scenario							•						
EWR site	Class	Class	Class	Natural (1922 – 1995)	EWR Requirement	(Table F, Main Report)	Appendix K of Reserve Determination Report		nised: , i.e. Scenario / from 11.1 of Main Report (called iario 14.in Water Resource Report)	Required EWR Flow (Mm ³ /a) from Section 6.1.14 of Resource Report	Required EWR Flow (Mm ³ /a)	from Appendix K	1925 – 1986	Total	Low flows	Possible low flow adjustment t obtain optimised scenario	Adjusted requirement	Adjusted requirement % MAR Requirements in WRYM (192 2004) (MM 200)		See Appendix B for flow sequences
		Mm³/a	Mm ³ /a MAR Mm ³ /a MAR		Scer	Mm³/a	Mn	n³/a	Mm³/a	Mm³/a	Mm³/a	% of natural MAR	Mm³/a	% of natural MAR	Total	Low flows				
Column a	b	с		d	е		f	g		h	i	j	k	L=g/k	m	n	0	р		
1	С	72	20	28%	19	D		8	D	10	74	17					17.5	n.a.		
2	D	86	32	37%	37	D		23	D	37	87	32					31.1* ²	n.a.		
3	C/D	365	42	12%	48	D	Omit annual flood of 50-90 m³/s, keep 12- 18 m³/s floods	12	D	17	375	45	10.4	117%	12	3%	40.9	12.1		
4	C/D	402	70	17%	75	D – low flow		16	D – low flow	7	417	82	13.8	115%	16	4%	72.2	15.8		
5	С	95	17	18%	31	D	No floods > 5 m ³ /s	6	D	18	95	17	8.3	74%	6	6%	14.9	5.3		
6	С	547	47	9%	55	D – low flow	Supply shortfalls from Middle Letaba	9	D – low flow	5	536	52	13.5	63%	9	2%	45.9	8.4		
7	С	562	52	9%	61	D – low flow	Supply shortfalls from	13	D – low flow	8	552	57	18.8	67%	13	2%	50	12.3		

Table 6.1 Ecological Water Requirements at Key Sites along the Letaba River

*1 This shorter period enabled the system to be modelled down to Massingir Dam, as the streamflows in the Crocodile system feeding Massingir Dam only extended to 1986.

*2 Not enforced – outflows from Letsitele River Sub-system were used instead.

7. CONCLUSIONS

7.1 CURRENT WATER REQUIREMENTS AND AVAILABLE WATER SUPPLY

Obtaining sufficient reliable data was difficult, as detailed information about existing and future population and water use is not readily available. In most cases, estimations needed to be made to provide figures to work from. The water requirements discussed in this report are summarised in **Table 7.1**

Description	Water Requirements in Mm ³ /a							
Description	2007	Additional to 2030	Total in 2030					
Primary – domestic (see Table 2.11)	22.0	28.8	50.8					
Primary – industrial	1.5	0.0	1.5					
Sub-total Primary	23.5	28.8	52.3					
Irrigation (surface water) *1	192.3	0	192.3					
Afforestation	77.6	0	77.6					
Totals (excl. Environmental)	293.4	28.8	322.2					
Primary – mining (to be supplied from outside the catchment)	0.0	21.0	21.0					
Environmental *2	14.8 Mm ³ /a = 0.469 m ³ /s	min = 16 Mm ³ /a max = 82 Mm ³ /a for EWR Site 4	16 to 82 Mm ³ /a at Site 4					

 Table 7.1
 Summary of Water Requirements in the Groot Letaba Catchment

*1 Irrigation supplied from surface water calculated from **Table 2.14** and **Table 2.16** (163.6 + 28.7). Irrigation supplied by groundwater is estimated to be an additional 29 Mm³/a.

*2 Note that the Environmental Requirement (non-consumptive user) cannot be simply added to the other water requirements

The existing (2007) water requirements in the Groot Letaba Catchment total approximately $293 \text{ Mm}^3/a$. The water use, allocations and yields from existing surface water sources are consolidated in **Table 7.2**.

The yield of the existing major dams in the Groot Letaba catchment is 125.6 Mm³/a which is substantially less than the current water requirements. Currently, the yield of most of the major surface water schemes is over-allocated. The result of this pressure on the available surface water supply is that the supply of water to the irrigation sector is curtailed to below their allocations on an ongoing basis. This is shown in the last two columns of **Table 7.2** where the irrigation requirement is 192 Mm³/a and the actual volume supplied is 158 Mm³/a.

		Histo	oric Firm		Allocation		Current Primary Water	Gross Irrigati Values used i	on Water Use n this Study * ⁶	
	Source	(N	lm ³ /a)	Primary (Mm ³ /a)	Irrigation (Mm³/a)	Total ¹ (Mm ³ /a)	Use 2006/7 (Mm³/a)	Gross Irrigation Water Values used in this Sture Values used in this Sture Requirement (Mm ³ /a) Sup (Mm 4.6 1.1 21.0 13.0 1 2.1 12.0 1 13.3 1 13.7 105.5* ⁴ 3 42.9 144.9 12 47.3* ⁴ 3	Supply (Mm³/a)	
	Dap Naude Dam		3.2	6.52	0.0	6.5	4.6	1.1	1.1	
	Ebenezer Dam		23.9* ²	14.4	12.9	27.3	21.0	13.0	10.5	
	Magoebaskloof and Vergelegen Dams	9.1	15.0		11.9* ⁵		2.1	12.0	11.6	
rces	Hans Merensky Dam and Selokwe River	6.8	15.9	3.0	13.3* ³	8.3		13.3	13.3	
Sou	Tzaneen Dam		74.6	8.4	105.0	113.4	13.7	105.5* ⁴	85.0* ⁴	
ing	Thabina Dam	2.9		Uncertain		Uncertain	4.5			
xist	Modjadji Dam	5.1	8.0	1.9		1.9	1.5			
ш	Total		125.6	34.2	143.2	177.4	42.9	144.9	123.8	
-	Local sources from d/s Tzaneen to confluence with Klein Letaba				47.3* ³	47.3		47.3 ^{*4}	36.5* ⁴	
	Overall Total		125.6	34.2	190.5	224.7	42.9	192.2	158.0	

 Table 7.2
 Summary of Existing and Future Sources and their Usage

1. Please note that these totals are at different assurances of supply.

2. 1:50 year assurance.

3. Existing water use.

4. No irrigation allowed in the KNP below the Letaba Ranch weir. All losses below this point are not caused by irrigation and are not included in the gross irrigation requirement or supply.

5. Although Sapeko no longer uses its allocation, the allocation was assumed to continue as the Magoeba tribe wish to claim this allocation. Includes 11.0 from Magoebaskloof + 0.87 Mm³/a from Debengeni Stream (of which 0.3 Mm³/a actually domestic).

6. For more detail, please refer to the detailed table in the Water Balance section of the Water Resource Analysis Report.

The recent determination of the EWR has introduced an additional requirement, which has increased the pressure on the available surface water.

Water requirements are not mainly from surface water sources, with minimal use being made of groundwater. There is considerable potential for increasing the use of groundwater in the catchment, particularly in conjunction with surface water to improve the quality of the groundwater without expensive treatment.

7.2 FUTURE WATER REQUIREMENTS AND POTENTIAL FUTURE WATER SUPPLY

7.2.1 Primary water requirements

It is anticipated that the water requirement for primary water use from Tzaneen Dam and the proposed Nwamitwa Dam supply area will grow from 13.9 Mm³/a in 2007 to a value of approximately 35.2 Mm³/a in 2030 (refer to **Table 3.7** in **Section 3.2.3**). This additional growth in water requirement will need to be accommodated by the implementation of an additional water resource (e.g. raising of Tzaneen Dam, construction of the proposed Nwamitwa Dam or from groundwater schemes.). At present, Polokwane is using more than their quota from the Groot Letaba Catchment. **

7.2.2 Other future water requirements

It was assumed that irrigation and afforestation requirements would remain constant. Future mining requirements were estimated to be 21 Mm³/a (**Table 3.9** in **Section 3.3**). Because of the pressure on the water resources in the catchment, it was assumed that where possible, future water supplies for Polokwane and future mining operations would be found outside of the Groot Letaba Catchment.

8. **RECOMMENDATIONS**

The following recommendations regarding water requirements are made:

- Given the stressed nature of the available water resources and the anticipated growth in primary water requirements, it is important to undertake verification and validation of water use in the Groot Letaba Catchment.
- It is important that municipalities measure and monitor water use so that in future accurate modelling can take place.
- Due to the stressed resources and the cost of developing new resources, the implementation of water demand/water conservation measures in the catchment is strongly recommended.
- Since the losses in the system are so significant, further investigations should be undertaken to refine the assumptions used to determine "river losses". This will enable the yields of dams in the system to be estimated with a higher level of certainty.
- When the hydrology for the Groot Letaba is revised, it is recommended that the water use of invasive alien plants be modelled as a separate water use.
- A regional study should be undertaken to further investigate increasing the use of groundwater in the catchment, particularly in conjunction with surface water.

9. **REFERENCES**

Department of Water Affairs and Forestry, South Africa. 1990a. Water Resources Planning of the Letaba River Basin Study of Development Potential and Management of the Water Resources Basin Study Report. DWA Report No. P B800/00/0290.

Department of Water Affairs and Forestry, South Africa. 1990b. *Water Resources Planning of the Letaba River Basin Study of Development Potential and Management of the Water Resources Basin Study Report : Annexure 17 : Water Losses.* DWA Report No. P B8000/00/1990.

Department of Water Affairs and Forestry, South Africa. 1994. Letaba Water Resource Development: Pre-feasibility Study : Main Report. Prepared by Steffen, Robertson & Kirsten (Ltd) Consulting Engineers for the Directorate of Project Planning. DWA Report No. PB800/00/0294.

Department of Water Affairs and Forestry, South Africa. 1998a. *The Groot Letaba Water Resource Development: Volume 1 : Feasibility Study Main Report.* Prepared by BKS Consultburo for the Directorate of Project Planning. DWA report no PB810/00/0298.

Department of Water Affairs and Forestry, South Africa. 1998b. *The Groot Letaba Water Resource Development: Volume 2: Water requirements and system analyses Report.* Prepared as part of the Feasibility Study by BKS Consultburo for the Directorate of Project Planning. DWA report no PB810/00/0398.

Department of Water Affairs and Forestry, South Africa. 2006a. *Letaba River System Annual Operating Analysis (2005/2006)*. Prepared by Semenya Furumela Consulting for the Chief Directorate: Integrated Water Resources Planning. DWA Report No. WMA 02/000/00/0406.

Department of Water Affairs and Forestry, South Africa. 2006b. *Letaba Catchment Reserve Determination Study – Hydrology Support and Water Resource Evaluation*. Prepared by K Haumann of P D Naidoo & Associates for DWA Directorate : Resource Directed Measures. DWA Report no RDM/B800/01/CON/COMP/1104.

Department of Water Affairs and Forestry, South Africa. 2007a. *Luvuvhu and Letaba ISP.* DWA Directorate of National Water Resource Planning. DWA Report No. P WMA 02/000/0203.

Technical Study Module : Review of Water Requirements : Volume 2

Department of Water Affairs and Forestry, South Africa. 2007b. *Great Letaba River Catchment Section 9B (1c) Abstraction and Storage Control Field Survey.* Undertaken by Schoeman & Vennote for DWA Sub-directorate : Abstraction and Storage. DWA Report No. B0301/2.

Department of Water Affairs and Forestry, South Africa. 2008. Nwamitwa RWS LPR006. Prepared by EVN Africa.

Department of Water Affairs, South Africa. 2010a. Groot Letaba River Water Development Project (GLeWaP) : Technical Study Module : *Groundwater Volume 3.* Prepared by Aurecon for the Option Analysis Directorate DWA Report No. P 02/B810/00/0608/3.

Department of Water Affairs, South Africa. 2010b. Groot Letaba River Water Development Project (GLeWaP) : Technical Study Module : *Water Resource Analysis Volume 5*. Prepared by Aurecon for the Options Analysis Directorate. DWA Report No. P 02/B810/00/0608/5.

Kleynhans, C J, Bruwer, C A, Kilian, V, Weston, B, Van Wyk, N and Sellick, C. 1998. *A procedure for the determination of the flow requirements of the ecological Reserve for the purposes of the planning estimate.* Unpublished document dated April 1998.

Mopani District Municipality Water Services Development Plan (Mopani WSDP). 2008.
Appendix A : Demands used in WRYM

				Facelbility study													
				Water R	equireme	nts and Sys 3)	tem Analy	sis (Note	Interp	olated	Main Report	WRYM	dging		dging ce		
Domestic use		Allocation	Usage (Mm3/a	1995	aggregated 1995	2020	aggregated 2020	aggregated	2007	aggregated 2007	2020 (Tables 5.3, 5.4 and 5.5) - Note 5	Bridging study \	Aggregated Brid WRYM	Source	Aggregated Bri WRYM by sour	Channel	Avg req (m3/s)
Polokwane (previously Pietersburg (from Dap Naude))	6.5	4.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	5.6	6.5	6.5	Dap Naude	6.5	303	0.207
Polokwane (from Ebenezer)		12.0	18.8	12.5	12.5	12.5	12.5	12.0	12.5	12.5	12.9	12.0	12.0	Ebenezer	12.0		
Haenertsburg			0.0	13.5	13.5	15.5	13.5	13.0	13.5	13.5	0.1	0.00	12.0	Ebenezer	12.0	312	0.380
Politsi											12			Magoebaskloof			
Duiwelskloof		2.0	2.1	1.52	1.5	5.16	5.2	2.4	2.7	2.7	1.2	2.0	2.0	Magoebaskloof/Vergelegen/Hans Merensky	2.0	332	
Ga-Kgapane											1.2			Magoebaskloof/Vergelegen/Hans Merensky			0.063
	Tzaneen u/s WTW	2.4	2.2	3.95		25.53			9.7		18.2	2.4	4	Ebenezer	2.4	325(reuse)	0.075
	Tzaneen d/s WTW	1.2	1.0	0.00		20100						1.2	4	Tzaneen	_		
Tzaneen (For Feasibility study this included growth at the Thabina and Modjadji Dams when this exceeded their capacity) Excess demand from Naphuno and Bolebedu shifted to Gt Letaba Letsitele Ritavi 2 Ritavi 1 Namakgale	Industrial (Consolidated and Letaba Citrus Processors, Consolidated Murchison, Maranda Mining Co) Nkowakowa Mamitwa Nondweni	3.3 0.4 3.5 0.0 0 0	1.5 0.3 8.2 1.9 0.8	1.99 0.00 0.22 5.60 1.59	13.4	1.99 7.34 0.76 11.42 4.70 -	51.7	38.1	2.0 0.4 7.9 2.7	22.6	1.5 5.25 0.7 9.8 2.7	1.5 0.0 0.3 8.2 1.9 0.0 0.8	16.3	Tzaneen Tzaneen Tzaneen Tzaneen Tzaneen Tzaneen Tzaneen	13.9	358	0.440
																391	
Naphuno		1.7	1.3	2.02	2.0	6.62	2.9	2.9	3.6	3.6	4.2	2.9	2.9	Thabina	2.9	ļ	0.090
Assumed Naphuno shifted to Gt Letabo	1																
/ Tzaneen						-3.76					-1.4						
Deleted		0.0	0.0	0.00	0.0	7.05			0.0	0.0	0.0	E 1	E 4	Madiaii	E 1	469	0.460
Bolobedu Assume Belekedu skifted to Ct. Letaka	1	0.2	0.2	0.00	0.0	7.95	4.4	4.4	0.2	0.2	8.3	5.1	5.1	Modjaji	5.1	408	0.162
Assume bolebeau shifted to Gt Letaba	/					-3 58					-30		1				
Groot Letaba Total		33.2	42.8	36.0	36.0	82.3	83.3	66.4	48.2	48.2	-0.0 66 4	44.8	44.8		44.8		
Giyani		3.7	3.7									3.7	6.0	Middle Letaba/Nsami	6.0	632 (20Mm ³ /a including irrigation+losses)	0.634
, Middle Letaba Dam WTW		23	23									23	1			624	0.073
TOTAL		2.3	2.0 <u>49.9</u>									50 8	50.9		50.8	024	0.075
		37.2	40.0									50.8	50.8		50.8		

Additional agricultural demands

1. Feasibility Study Report. Volume 2. Water requirements and system analyses. Report PBB810/00/0398 Annexure A : Domestic and Industrial Water Use and Water Demand. Domestic from Table 7.

2. 0.3 million m³/a demand of SAPEKOE on the Debengeni R is included with SAPEKOEs agricultural demand

3. Feasibility Study Report. Volume 2. Water requirements and system analyses. Report PBB810/00/0398 Annexure A : Domestic and Industrial Water Use and Water Demand. Domestic from Table 9 and 10.

4. Excludes Debengeni to SAPEKOE

5. In Table 5.4 of the Feasibility Report there is an error and the individual rural domestic requirements add up tp 25.04 instead of the 29.01 quoted for Scenario 1 in 2020 (Possibly the total included Giyani, Lulekani and Namakgale 2). As a result the total industrial/domestic demand of 66.4 is less than the 70.4 reported in Table 5.6 of the Main Report

Notes

The actual usage by Polokwane, Nkowakowa and Ritav1 exceeds the allocation by 13.4 million m3/a.

Assume Polokwane demand is limited to its allocation as it is external to the water supply system and might find an alternative water source

The estimate of the actual usage is 4.3 million m3/a less than the projected demand for 2007 and the adopted present day demands are about 2.3 million m3/a less thant the Feasibility Projection If Thapane was modelled a target draft of 1Mcm/a could act on that dam

Appendix B : Water Requirements Report – Urban-Econ

Groot Letaba Water Study Task One – Water Requirements

PO Box 6764 Nelspruit, 1200

nelspruit@urban-econ.com

Technical Study Module : Review of Water Requirements : Volume 2

Table of Contents

LIST	LIST OF TABLES					
LIST	OF N	1APS	4			
LIST	f of a	CRONY	MS 5			
СН	APTER	1 – OR	IENTATION			
	1.1	Project	BACKGROUND			
	1.2	Primary	STUDY AREA			
	1.3	PURPOSE	OF THIS REPORT			
	1.4	Informa	TION SOURCES			
	1.5	DOCUME	NT OUTLINE			
СН	APTER	2 – 500	CIO-ECONOMIC PROFILE			
	2.1					
	2.2	GROOT LETABA RIVER CATCHMENT				
	2.3	SOCIO-DEMOGRAPHIC OVERVIEW1				
		2.3.1	Study area composition11			
		2.3.2	Population size and growth13			
		2.3.3	Urbanization14			
	2.4	Regiona	L ECONOMIC OVERVIEW			
	2.5	Synthes	ıs21			
СН	APTER	2 3 – WA	TER USE ASSESSMENT			
	3.1	WATER U	SE INDICATORS			
	3.2	Land Us	E			
		3.2.1	Irrigation22			
		3.2.2	Afforestation24			
	3.3	RDP WA	TER RATINGS FOR THE SPECIFIC AREAS IN STUDY			
	3.4	WATER A	VAILABILITY AND REQUIREMENTS			
		3.4.1	Current Water Requirements			
		3.4.2	Transfers27			
		3.4.3	Reconciliation of Requirements and Available Water			

3.5	AFFECT OF $HIV/AIDS$ on the Population and the Respective Grov	vth Rates Estimations28
3.6	Affects of HIV/AIDS on Water	
3.7	Synthesis	
СНАРТЕІ	R 4 – FUTURE WATER DEMAND ESTIMATES	
4.1	Population Growth Projections	
4.2	Water Demand Estimations	32
4.3		
CHAPTEI	R 5 – CONCLUSION AND RECOMMENDATIONS	
LIST OF I	BIBLIOGRAPHY	

List of Tables

Table 1:	List of Main Places within the primary study area	. 11
Table 2:	Population distribution for relevant local municipalities in the secondary study area	. 13
Table 3:	Population distribution in the relevant settlements per relevant local municipalities within the primary study area	; . 14
Table 4:	Population per main towns considered in the current assessment	. 14
Table 5:	Composition of Population in S.A. Limpopo and Mopani District	. 15
Table 6:	Irrigation and forestry coverage in study area	. 23
Table 7:	Irrigation schemes earmarked for revitalization	. 23
Table 8:	Hydrology of the study area	. 24
Table 9:	RDP water ratings for the specific areas in the study area	. 25
Table 10:	Water availability in the study area	. 25
Table 11:	Local Water Requirements in the study area (1:50 year assurance)	. 26
Table 12:	Primary water demands (Mm ³ /a)	. 26
Table 13:	Water use by industrial water users	. 27
Table 14:	Reconciliation of requirements and available water for 2000	. 28
Table 15:	Population distribution for relevant local municipalities in the secondary study area	. 31
Table 16:	Population growth projection scenarios	. 31
Table 17:	Population growth estimations based on the growth scenarios	. 32
Table 18:	Water Requirements 2030 according to Method 1	. 33
Table 19:	Total Water Requirements in 2030 according to Method 1 (using the medium scenario population growth projections)	. 34
Table 20:	Reconciliation of Requirements and Available Water in 2030 – according to Method 1:	. 34
Table 21:	Water Requirements selected years according to Method 2 (using area specific historical growth trends)	. 34
Table 22:	Water Requirements in 2030 according to Method 2 (using area specific historical growth trends)	. 35

Table 23:	Reconciliation of Requirements and Available Water in 2030 – according to Method 2 (using area specific historical growth trends)	35
Table 24:	Water Requirements for selected years according to Method 3 (using the medium growth scenario formulated as part of Method 1)	36
Table 25:	Water Requirements in 2030 according to Method 3 (using the medium growth scenario formulated as part of Method 1)	36
Table 26:	Reconciliation of Requirements and Available Water in 2030 – according to Method 3 (using the medium growth scenario formulated as part of the method one approach)	36

List of Maps

Map 1:	Graphical illustration of the primary study area	7
Map 2:	Graphical illustration of the secondary study area	10
Map 3:	Nodal growth points	20

List of Acronyms

AIDS:	Acquired Immune Deficiency Syndrome
DWAF:	Department of Water Affairs and Forestry
HIV:	Human Immunodeficiency Virus
IDP:	Integrated Development Plan
ISP:	Internal Strategic Perspectives
LED:	Local Economic Development Plan
SEA:	Strategic Environment Assessment
WSDP:	Water Service Development Plan
WMA:	Water Management Area

CHAPTER 1 – ORIENTATION

1.1 PROJECT BACKGROUND

The Groot Letaba catchment falls within the Luvubu-Letaba Water Management Area (WMA), one of the 19 WMAs into which South Africa is divided. Human settlement, agricultural production and tourism between the Drakensberg escarpment and the Kruger National Park have placed demands on the water resources of the Groot Letaba River which can no longer be met within reasonable risks of shortages from the existing infrastructure.

Due to this situation the Department of Water Affairs and Forestry (DWAF) is reassessing how best to manage the supply of water from the Groot Letaba River system. The system includes Dap Naude Dam, Ebenhaezer Dam, Tzaneen Dam and other smaller dams. Practical implementation of water releases for the Reserve in the Groot Letaba River system as a whole is being investigated. Investigations include an assessment of the yield characteristics of all available resources in the river system serving the wide variety of user sectors and abstraction points.

A Feasibility Study, to investigate these needs, was conducted in 1998. As a result of the study it was proposed that the following be undertaken:

- construction of a large dam on the Groot Letaba River at the Nwamitwa site, downstream of the confluence of the Nwanezi River,
- realignment of the roads to accommodate the dam, and
- construction of bulk water pipelines and pump stations from the dam for water supply for domestic and industrial use in the area,
- Raising of the Tzaneen Dam wall be considered.

DWAF is now reviewing the water supply needs of the Groot Letaba catchment area and post feasibility bridging studies are being conducted to confirm whether the recommendations made previously are still relevant and how they should be taken forward.

1.2 PRIMARY STUDY AREA

According to the 1998 Main Feasibility Report regarding the Groot Letaba Water Resource Development, The Groot Letaba River is one of the main rivers draining the Drakensberg escarpment, eastwards through the Lowveld and the Kruger National park, to meet with the Olifants River in a spectacular gorge on the border with Mozambique. The Groot Letaba River has important tributaries draining a large portion of the northern part of the catchment area, namely the Middle Letaba River, Klein Letaba River and Shingwedzi River.

The proposed Nwamitwa Dam site falls in the Groot Letaba River catchment which is located in the Limpopo Province, 90km east of Polokwane, and covers approximately $5,000 \text{ km}^2$ between longitudes $30^\circ 11'$ E and $31^\circ 00$ E' and latitudes $23^\circ 15'$ S and $24^\circ 00'$ S. The Groot Letaba River drains a catchment of 2885 km² with three main tributaries upstream of the Klein Letaba River, namely, the Letsitele River, the Nwanedzi River and Molototsi River.

Source: Demarcation Board, 2007.

Based on early requested by the client, the original study area under consideration was the area around the proposed dam site with a 60 km radius around with included the District Municipalities of Mopani (DC33), Vhembe (DC34) and Capricorn (DC35). Later requests from the client necessitated that the study area to be brought in line with the study area considered by the earlier investigations into the proposed Nwamitwa Dam and the specific settlements that were considered to form part of the study area was cross checked with a database provided by the client originating from EVN Africa Consulting Services (Pty) Ltd. The final demarcated primary study area consists of settlements from the Greater Tzaneen, Greater Letaba and Greater Giyani Local Municipalities, all forming part of the Mopani District Municipality.

B-7

The Mopani District municipality is situated in the North-eastern part of the Limpopo Province, 70 km from Polokwane (main City of the Limpopo Province). It is bordered in the east by Mozambique, in the north, by Zimbabwe and Vhembe District Municipality, in the south, by Mpumalanga province through Ehlanzeni District Municipality and, to the west, by Capricorn District Municipality and, in the south-west, by Sekhukhune District Municipality. The district has been named Mopani because of abundance of nutritional Mopani worm found in the area. The district spans a total area of 2 242 183 ha (22 421.83 km²), with 15 urban areas (towns and townships), 325 villages (rural settlements) and a total of 106 wards. The Mopani District, by virtue of the Kruger National Park as a District Management Area, is part of the Great Limpopo Transfrontier Park, the park that combines South Africa, Mozambique and Zimbabwe¹.

Although the settlement names were checked, there are some discrepancies between the population sizes of the various settlements and therefore the study area as a whole, certain adjustments were made to accommodate these differences.

Before providing an overview of the size of the population located in the study area, it is important to note that the information provided by DWAF for the current assessment was obtained by them from the 2001 Census data, and therefore reflects the population in 2001 and this figure is adjusted by DWAF annually with the STATS SA population growth formulas. According to DWAF regular adjustments area made with regard to the Reference Framework Studies that are regularly undertaken.

1.3 PURPOSE OF THIS REPORT

The primary objective of this report was to review and update the findings regarding the water use requirements as set out in the 1998 Feasibility Study in order to ensure that the findings of that document are still in line with the current and potential future water requirements.

All existing information on historical, current and proposed water use in the study area was reviewed and where necessary and possible, updated. This report also utilized population projections, water use profiles, socio economic profiles and trend analysis to estimate future water requirements till 2030.

1.4 INFORMATION SOURCES

In this report, data was obtained from the following sources:

- Mopani District Municipality: They provided data in the form of IDP's en LED's. The district data have been collected from the Local Municipalities, which in turn got their data from DWAF and various field surveys.
- DWAF: The Department of Water Affairs and Forestry is the custodian of South Africa's water and forestry resources. It is primarily responsible for the formulation and implementation of policy governing these two sectors. It also has override responsibility for water services provided by local government. DWAF provided data on water related subjects and information.
- Quantec: Quantec Research (Pty) Ltd is a South African based consultancy. They focus on the marketing, distribution and support of economic and financial data, country intelligence and quantitative analytical software. They also provide consultancy in custom economic and financial database solutions, economic analysis and forecasting, and market analysis and segmentation.

¹ According to the Mopani District Municipality Reviewed IDP for 2007/08.

• Stats SA: They provide relevant and accurate body of statistics to inform users on the dynamics in the economy and society through the application of internationally acclaimed practices. They were helpful in providing personal and household data.

Additional data regarding the specific conditions in the study are concerning development and communities were obtained from:

- WSDP: Water Service Development Plan. Provided water services related information.
- ISPs: Internal Strategic Perspectives. The Internal Strategic Perspective (ISP) aims to ensure synergy within the Department of Water Affairs and Forestry (DWAF) regarding water resources management. The ISP presents a common and consistent departmental approach to guide officials when addressing water management related queries and evaluating water license applications. The ISP provided important data regarded the quaternary catchments that falls within the study area.

All of the above mentioned documents were used to review and update the previous 1998 Main Feasibility Report undertaken on the Groot Letaba Water Resource Development Project.

Apart from the time difference between the two studies, there are a number of aspects that might impact on the results of the investigations and therefore must be highlighted at this point in the document:

- The study area that was used in the current study is somewhat bigger than the study area of the 1998 Feasibility assessment. The study area of the current study is set out in detail in the next chapter. It is however clear that study area in the current study is similar to that of the 1998 study with the difference of more focus falling on the rural settlements.
- 2. The information concerning the population and associated population growth were obtained from the Quantec and DWAF databases, and no fieldwork was undertaken.

1.5 DOCUMENT OUTLINE

The remainder of the document is set out as follow:

Chapter 2 – Provides an overview of the socio-economic conditions of the study area considered. Chapter 3 –

- Chapter 4 –
- Chapter 5 –

CHAPTER 2 – SOCIO-ECONOMIC PROFILE

The aim of this chapter is to provide an overview of the current socio-economic conditions in the various municipalities located with the area of interest of the Nwamitwa Dam. Some of the areas within these municipalities are located directly within the primary study area. More specifically it should be noted that any demographic or economic changes in these municipalities or the so-called secondary study area will affect the settlements located in the primary study area or area of focus.

The remainder of this section will therefore provide an overview of the most prominent social and economic data regarding the secondary study area which could potentially have an impact on the primary study area.

2.1 LOCATION

The aim of this section is just to clarify the specific area that will be under consideration for the socio-economic assessment. The secondary study area is set out in the following map – it encompasses the three local municipalities that partially form part of the primary study area, namely the Greater Tzaneen, Greater Letaba and Greater Giyani Local Municipalities.

Map 2: Graphical illustration of the secondary study area

Source: Demarcation Board, 2007.

2.2 GROOT LETABA RIVER CATCHMENT

The proposed Nwamitwa Dam site falls in the Groot Letaba River Catchment. This river system can be divided into three sub-systems as follows:

- The Groot Letaba sub-system stretching down to its confluence with the Klein Letaba River.
- The Klein Letaba sub-system stretching to its confluence with the Groot Letaba River.
- The Lower Letaba sub-system which stretches from the confluence of the Klein and Groot Letaba Rivers to the confluence with the Olifants River just upstream of the border with Mozambique.

The above mentioned sub-systems can future be divided into quaternary catchments. The study area covers the full extent of the B81 tertiary catchment area as defined by the WR90 Quaternary Drainage Regions Map and measures about 5,000 km². It comprises the catchment of the Groot Letaba River and its major tributaries, the Letsitele, Nwanedzi and Molototsi Rivers.

The study area also includes the lower parts of the Klein Letaba Catchment which includes the B82A-B82D and B82G catchments.

Due to the fact that the aim of this document is to provide a review and update of the 1998 Main Feasibility Report concerning the current and anticipated future water requirements, the specific catchment information is not discussed at length but only included in the report in order to indicate a holistic understanding of the study area.

2.3 SOCIO-DEMOGRAPHIC OVERVIEW

2.3.1 Study area composition

The primary and secondary study areas have been explained in Chapter One as well as Section 2.1. The aim of this section is to provide the relevant socio-demographic data for the three relevant municipalities, and provide comparisons with the Mopani District and the Province where relevant or necessary to contextualize the information.

According to the DWAF database, compared to the EVN database and finally the adjusted Urban-Econ database used for the current assessment, the following settlements fall within the primary study area:

Table 1: List of Main Places within the primary study area

LOCAL MUNICIPALITY	SETTLEMENT
	BAMBENI
	DANIEL
	DZUMERI
Greater Giyani Local Municipality	DZUMERI ICH
	MAGEVA
	MPHAGENI
	ZAVA
	ABEL
	BEMBULA
	BOTSHABELO
	BUDZA
	FEMANE
	GA-NTATA
	HLOHLOKWE
	JOKONG
	KORANTA
	LEKGWARENG
	LENOKWE
	MAEKGWE / RATJEKE
	MAMANYOHA
	MOTHELE
Greater Letaba Local Municipality	MOTHOBEKI

	SETTLEMENT
	MPEPULE
	PETERSON
	POLASENG
	RAMAROKA NORTH
	RAMAROKA SOUTH
	RAMODUMO
	RAMPEPE
	SEAPHOLE
	SEKHIMING
	TAULOME
	WORCESTER
	BABANANA
	BOKUTA
	BOTLUDI
	FOBENI
	FOFOZA
	GAMOKGWATHI
	GA-WALLY
	JOKONG
	JOPI
	KA-MSWAZI
	KA-XIHOKO
	KOBJANA
	LEREJENE
	LWANDLAMUNI
	MABYEPELONG
	MADUMANE
	MANDLAKAZI
	MAPITLULA
	MARIRONI
	MAVELE
	MAWA 12
	MAWA 8
	MAWA 9
	MBEKWENA
	MIRAGOMA
	MOLEKETLA
	MOOKGO 6
	MOOKGO 7
	MORAPALALA
	MORUJI
	MORWASHETLA
	MOTHOMENG
	MOTHOMENG
	MOTUPA
	MPOPYE
	MUGWAZINI
	MUSIPHANA EAST
	MUSIPHANA WEST
	NKAMBOKO
	NWAMITWA
	PJAPJAMELA
	RELELA
	RIKHOTSO
	RIKHOTSO NORTH
	RUNNYMEDE
	RUWANDA
	SEMARELA
	SENAKWE
	SEOPENG
	SEROLOROLO
	SETHONE
Greater Tzaneen Local Municipality	ТНАКО
	THAPANE

Source: DWAF, EVN, Urban-Econ, 2007.

In addition to the settlements set out in the table above, the 1998 report also makes reference to the urban water demand of the following towns:

- Tzaneen
- Haenertsburg
- Duiwelskloof
- Ga-Kgapane
- Politsi

- Letsitele
- Pietersburg and environs.

The data obtained for the main towns regarding water demand and water use is closely correlated to these towns and might include some additional information or might be lacking some small part of data. For the purpose of the current assessment the information obtained mainly through secondary sources were deemed adequate.

In addition to the urban and rural users, the industrial users that were considered included:

- Consolidated Murchison Mine near Gravelotte
- Letaba Citrus Processors
- Sapekoe industries.

The database used by Urban-Econ to undertake the demand projections were finalised through detailed consultations and input received from the client, and where possible all the most recent information about all the water users were assessed.

Were possible the most recent information was obtained in order to ensure that the water demand projections reflect the true situation currently prevalent in the study area.

2.3.2 Population size and growth

In order to have a clear understanding, Urban-Econ deemed it essential to investigate in more detail the historical population growth trends to indicate the 2007 population in the relevant local municipalities of which certain segments of the population form part of the primary study area. The total population of the relevant municipalities for 1996, 2001 and the estimated population in each area in 2007 are presented in the following table based on the historical growth rates between 1996 and 2001.

DISTRICT	1996 2001		Growth Rate 1996 to 2001	2007
Limpopo Province Total	4,520,529	4,995,533	2.02%	5,632,403
Mopani District Municipality Total	956,352	1,061,454	2.11%	1,203,125
Greater Giyani LM Total	217,442	239,283	1.93%	268,364
Greater Letaba LM Total	202,069	220,105	1.72%	243,819
Greater Tzaneen LM Total	340,321	375,587	1.99%	422,723
TOTAL SUB-AREA	759,832	834,975	1.90%	934,800
Ba-Phalaborwa LM Total	107,813	131,092	3.99%	165,778
Maruleng LM Total	87,355	94,385	1.56%	103,571
Kruger Park North LM Total	1,353	1,002	-5.83%	699

Table 2: Population distribution for relevant local municipalities in the secondary study area

Source: Urban-Econ calculations based on Census 1996 and 2001 data, 2007

The preceding table provides insight into the situation regarding population growth in the local municipal areas that have areas that make up the current assessments primary study area as set out in Map 1.

From the table it is clear that the overall population growth was positive reaching almost 2% in Greater Giyani and Greater Tzaneen. This is slightly lower than the provincial and district growth rate which is 2.02% and 2.11% respectively for the period 1996 to 2001.

Due to the fact that the data provided by DWAF are already been adjusted by themselves based on the STATS SA population growth rates and additional work undertaken by DWAF, the estimated composition of the primary study area population, for the purpose of the current assessment, are taken to be as follow:

Table 3:	Population	distribution	in the	relevant	settlements	per	relevant	local	munici	<u>palities</u>
within the	<u>e primary st</u>	<u>udy area</u>				-			-	

RELEVANT MUNICIPALITY	POPULATION IN PRIMARY STUDY AREA FOR 2007	% REPRESENTATION FOR PRIMARY STUDY AREA IN 2007					
Mopani (DC33)							
Greater Giyani	29,855	12%					
Greater Letaba	50,803	21%					
Greater Tzaneen	160,670	67%					
AREA SUB TOTAL	241,248	100%					

Source: Urban-Econ calculations based on Census 1996 and 2001 data and DWAF database for primary study area, 2007

From Table 3 it is clear that the settlements that form part of the Greater Tzaneen Local Municipality account for 67% of the total population of the primary study area while the smallest contribution is made by the villages located in the Giyani Local Municipal area.

In addition to the population in the settlements, the population of the main centres also had to be considered, and the information obtained in this instance, were as follow:

RELEVANT MUNICIPALITY	POPULATION IN PRIMARY STUDY AREA FOR 2007	% REPRESENTATION FOR PRIMARY STUDY AREA IN 2007
Mopani (DC33)		
Greater Giyani	29,855	12%
Greater Letaba	50,803	21%
Greater Tzaneen	160,670	67%
AREA SUB TOTAL	241,248	100%

Table 4: Population per main towns considered in the current assessment

Source: Urban-Econ calculations based on Census 1996 and 2001 data and DWAF database for primary study area, 2007

2.3.3 Urbanization

The following Table indicates the level of urbanization for the Limpopo Province and Mopani District. On National level and Provincial level the percentage of people living in urban areas has increased while the population living in non-urban areas has decreased. This is however not the case in Mopani District where the percentage people living in urban areas have decreased from 14.9% in 1996 to 6.6% in 2001, the percentage people living in non-urban areas have grown from 85.1% to 93.4%. The reason why people in the Mopani District have moved to the non-urban areas might be contributed to people opting to make a living in the agricultural sector.

Year	Limpopo Province		Mopani District		
	1996	2001	1996	2001	
Total population	4916880	5273637	957164	1060442	
<u>Urban/ Non</u>					
Urban	11.0%	11.3%	14.9%	6.6%	
Non-Urban	89.0%	88.7%	85.1%	93.4%	

Table 5: Com	position of Po	pulation in S.A	A. Limpop	o and Mo	pani District

(Source: Mopani District Municipality)

It is clear that the majority of the people in the secondary study area fall within rural areas and in many instances this hampers the delivery of water and services due to the lack of appropriate infrastructure. Due to the nature of the area, the dependence on agriculture, and intensive farming activities such as commercial timber, cash crops, tropical and citrus fruit production, and the location of the people in the more rural areas is understandable.

The level of formalisation, the available infrastructure and the level of access to services and water could influence the demand for water, and more specifically the way in which water is utilised. In the next chapter more information is provided on the assumptions that were in used as a basis during the modeling of the water requirements, regarding per capita water use.

The reviewed IDP of the Mopani District for 2007/08 provides an indication of the urbanisation in 2006, and it is stated that of the districts population, 81% resides in rural areas while 14,2% study in urban area and 4,6% stay on farms.

2.4 REGIONAL ECONOMIC OVERVIEW

In order to fully understand the future water demand requirements that would need to be catered for, either through the proposed Nwamitwa Dam, the raising of the Tzaneen Dam or other means, is largely influenced by the regional economic development taking place.

Apart from the residential or primary users of water, the economic users of water are also a very important aspect to consider. It has already been mentioned that the area consists mostly of commercial farming or agriculture related activities, there is also some mining activities taking place as well as a well established services sector.

It is therefore essential to understand the economic conditions in order to understand the related water demands set out in later chapters of this document.

The aim of this section is to provide insight into the type of sectors and industries that play an important role in the economic conditions of the area under assessment. The following diagram provides insight into the percentage contribution of the different economic sectors to the GDP of the Mopani District Municipality.

Source: Urban-Econ calculations based on Quantec Economic Database, 2007

From the diagram the following can be deduced:

- 1. Three sectors, namely the mining-, construction- and community, social and other personal services sectors indicated positive growth in the period 1995 to 2007.
- 2. Most sectors showed an overall decline in the percentage contributions it makes to the GDP of the Mopani District Municipality with the exception of the agriculture, forestry and fishing sector which had some fluctuations in the period between 1995 and 2007, but the contribution in 1995 and 2007 are equal.

The website of the Mopani District indicates the following in terms of the manufacturing and trade within the area:

Manufacturing and Trade

In terms of the previous Regional Industrial Development Programmes (RIDP), three towns qualified as Industrial Development points, namely Giyani, Tzaneen and Nkowakowa. The modus industries in the district are mainly basic metals and fabricated metals followed by food manufacturing.

The basic metals and fabricated metals dominated by structural steel and engineering workshops. The district also has a number of industries involved in the processing of wood (saw milling). The food manufacturing industries are dominated by canned, preserved and dried fruit and vegetable juices which indicates a degree of linkages to the local Agriculture sector. Of significance, is to ensure that even small and emerging farmers have access to these markets.

Major trading centers in the district include Tzaneen/Nkowakowa/ Lenyenye node, the Phalaborwa/Lulekani/Namakgale node and to a lesser extent the Giyani node. Generally there is a net of outflow of buying power, particularly so from the smaller nodes as they do not cater for the entire consumer needs, and secondly because a considerable number of people work outside these nodes in places such as Polokwane. Key investments are also needed in towns like Phalaborwa and Tzaneen to achieve the minimum agglomeration for sustainable industrial development.

Business and investment opportunities

Mopani District Municipality is the centre of the Limpopo Province tourism and business attraction and home to one of the areas identified by the government for its Spatial Development Initiative, Nodal point, Expanded Public Works Programme (EPWP) which is aimed at providing platforms for business and investors to improve competitiveness. A District that have vast contrasts; vibrant and steeped in tradition and history. From Bushveld wilderness, wildlife, mountain ranges, age old indigenous forests and cycads, waterfalls, to subtropical fruit and tea plantations are only few of the attraction that characterise the vastness of this land

Development Opportunities/Potential in Mopani District

The provincial economic development study identified Tourism, Agriculture, Mining and Trade and Manufacturing as sectors with potential for growth in the district. Applying arithmetic reasoning the region has comparative advantages in Agriculture, Manufacturing and Trade. Although the region has potential in all sectors, some of the sectors like agriculture are under performing.

SMME Development and LED

Giyani Local Business service Centre and Phalaborwa entrepreneurial Support Centre were established in the District. The centers provide supportive services to SMMEs and Entrepreneur development with regard to business training, counseling and business information. Other initiatives around local economic development have been through the assistance of Social Plan Fund and Local Economic Development Fund.

Spatial Development Initiatives (SDI)

Phalaborwa has been identified as one of the growth points within the districts. Phalaborwa SDI joins with Maputo Development Corridor. The main road link run from Phalaborwa to Nelspruit in the Mpumalanga Province, where the SDI join the Maputo Development Corridor. The Development Corridor aims to create better access between the port of Maputo and mining potential around Phalaborwa in the Limpopo Province and the Agricultural projects near Xenon and the rest of the Districts.

The objectives of the Phalaborwa SDI is to generate sustainable economic growth and development in this relatively under developed district according to the area's inherent economic potential in tourism, agriculture, mining and mineral processing and forestry. The Phalaborwa SDI is a vehicle to enhance efforts of generating long term and sustainable employment for the local inhabitants by exploiting the spin- off opportunities that arise from the relative crowding in of private and public sector investments.

Agriculture

Agriculture is the backbone of any developing economy. It is the sector that is able to create more sustainable jobs, absorbing even the unskilled and semiskilled workers, and as such bring about sustainable rural development.

The district (Lowveld region) contributes significantly towards the activity of agriculture on the provincial level. About 50% of the farm income in the province in Horticulture is earned in the district. Most important crops in terms of monetary value are citrus, vegetables and subtropical fruit. 6,7% of the land can be considered arable of which 43% is under irrigation, which by far the most of all districts in the province.

The most important irrigation schemes in the region are Lower –Letaba, Blyde irrigation and Middle Letaba. The region has future agricultural potential highly concentrated in subtropical fruit, citrus fruit production and vegetables. Unutilized potential is estimated at between 10 000 to 70 000 hectares. According to the Provincial Economic Development Strategy, 10, 000 hectares of this potential could be brought into production over the next 5 years, mainly in new orchards in the Letaba/Letsitele basin area and about 1500 hectares in the Klein Letaba area.

Mineral Development

Although it can be said that this region is mostly agricultural, it also contains a major mining cluster at Phalaborwa. Phalaborwa has been declared a Spatial Development Initiatives. The objectives of the SDI is to exploit the unutilized and underutilized potentials of the area by combining private and public sector resources in a sustainable manner. Other significant mineral zones in the region are the Murchison Greenstone Belt (Gravellotte towards Leewkop in the Kruger National Park [KNP]), Giyani Greenbelt-from KNP in the south Western direction to the town of Giyani, and Rooiwater Complex Northern flank of Murchison.

There are number of mega projects that mining companies have been considering for implementation or exploration in the district. This includes the expansion of rock Phosphate production by FOSKOR, the Phlogopite processing facility, the Koalin clay project, institution of underground copper mining operations at Phalaborwa, surface strip mining of mineral sand in Gravellotte area, exploitation of heavy mineral deposits in the Tzaneen area (by Red River mining and ISCOR), erection of a steel production facility (Magnetie).

There are small mining initiatives such as the small gold mining projects in the Giyani and Murchison sequence greenstone areas and the production of dimension stone for the building industry at the Mica area. Potential also exist for small scale mining in the Murchison sequence near Gravellotte (antimony and emeralds) and along the East/ West ridge of mineralization south of Phalaborwa and extending from the Kruger National Park to Mica.

Overall the main potential is centered around Phalaborwa in the Phalaborwa Mineral complex with its well known copper and Phosphate resources and in the Murchison Range from Gravellotte towards Nkowakowa / Tzaneen which is reputed to be the most diverse mineralization zones in the world.

Mining development has a potential to contribute over R6300 million in direct investments through the different ventures/prospecting in the district. Mining development could in the short term form the corner stone of economic growth not only in the district but also in the whole of Limpopo Province.

Source: http://www.mopani.gov.za/bus investment/led.htm

Another project that provides insight into the development potential of the area is the **Limpopo Province Spatial Rational** (2002), which identified a total of 16 Growth Points have been identified within the study area consisting of three types of growth points and population concentrations. These are as follows:

- 4 Provincial growth points namely:
 - o Phalaborwa
 - o **Giyani**
 - o Tzaneen
 - Modjadjeskloof
- 6 District growth points namely:
 - o Namakgale
 - o Gravelotte
 - o Mageva
 - o Kgagapane
 - o Nkowankowa
 - o Lenyenye
- 6 Municipal growth points namely:
 - o Lulekani
 - o Xawela
 - Senwamokgope
 - Haenertsburg
 - Bergersdorp
 - o Letsitele

The 16 growth points identified above are illustrated on the Map below:

(Source: Mopani District Municipality)

The 16 Growth Points are identified as being located within first order settlements. The First Order Settlements (Growth Points) are individual settlements or a group of settlements located relatively close to each other where meaningful economic, social and institutional activities and a substantial number of people are grouped together. These settlements are further classified as Provincial, District and Municipal Growth Points.

Phalaborwa, Giyani, Tzaneen and Mojdjadjeskloof have been identified as Provincial Growth Points within these first order settlements. The Provincial Growth Points are settlements with relatively large economies employing a large residential area. These settlements have regional and some Provincial service delivery elements. This includes at least local municipal offices which performs all municipal services such as water, electricity, sanitation, refuse removal, road maintenance, etc.

Greater Giyani is situated to the north of the District in the former homeland of Gazankhulu. The Growth Points in the Municipality are scattered and the municipality mostly has local service points due to its rural nature. A result of the scattered nature of these villages a lack of infrastructure and services exist.

From the preceding it is clear that there is a number of economic growth and development opportunities that could have a potential impact on the water demand requirements of the area in order to sustain the growth and development. According to the Greater Mopani District Municipality's LED, the scarcity of water is one of the main constraints on development, and due to the fact that the availability of water is such a problem, it is important to understand the current water demand situation before assessing the potential future water demand requirements of the study area.

2.5 SYNTHESIS

The aim of this chapter was not too provide an extensive overview of the socio-economic conditions, but more to create an understanding of the aspects related to the socio-demographic and economic conditions that have either a direct or indirect impact on the demand for water.

From the information presented in this chapter, it is clear that the study area considered has a growing population, and although the modeling regarding water requirements until 2030 have been done in order to reflect different development scenarios, the main point to note is that the overall expectation is growth in the area. More people in an area translate directly into an increased water demand and the relevant infrastructure.

Additionally it had been shown that there is economic growth and development taking place, but many of the sectors are experiencing problems with regard to growth potential due to the decreasing availability of water. In order to sustain and improve economic growth the provision of water to all the end users in the area is essential.

The level of water use and the amount of water required are also influenced by the financial status of the people residing in the area. This can be ascribed to the fact when people only receive the basic minimum allowed without charge water use will be related to specific water use levels, when the situation changes and people have to pay for water, the amount of water could significantly change. The same could be said for situations where water becomes scarcer which leads to an increase of the price of water, the impact on water demand could be drastic.

Therefore the following chapter provides more detail information on the water demand assessment that was undertaken.

CHAPTER 3 – WATER USE ASSESSMENT

In the 1998 Main Feasibility report, a section is included that deals with the difficulties associated with determining specific water demands due to the uncertainty regarding per capita water demand. The main focus of the current assessment is also on the water use of the more rural areas and a lack of information does increase the difficulty of assessing the water demand for the primary study area.

The preceding section did however provide some insight into the type of access the people in the study area have to water and the from the type of connections the 1998 Main Feasibility Study determined that these connections can be translated into levels of living which has a direct influence on the amount of water demand per capita.

The aim of this section, and the report as a whole, is to review and update the water requirements assessment that was done as part of the 1998 Main Feasibility Report. Therefore the aim this section is to provide updated water requirements assessment based on the anticipated change in population, the changes that have taken place in terms of the economic environments in these areas and also provide insight into any other aspect that might influence water demand.

3.1 WATER USE INDICATORS

In the previous 1998 Main Feasibility Report, in Part Two Annexure A, the part of the document dealing specifically with the water demand projections, the influence of a number of water indicators were also regarded as having significant impact on the amount of water demanded by the people in the study area.

The indicators that were considered included:

- 1. Construction materials used for the construction of dwellings
- 2. Dwelling types
- 3. Enthusiasm for gardening
- 4. Extent of electricity connections
- 5. Ease of access to places of employment and other services.

These indicators were investigated as part of the previous feasibility assessment by cursory field checks, and the information was deemed sufficient for the purpose of the 1998 document. During the current review and update of the information, no additional fieldwork was conducted and the information of the previous assessment would therefore be used as a basis for some of the assumptions made with regard to updating the water demand projections.

3.2 LAND USE

3.2.1 Irrigation

Due to the fact that there are consultants concerned in more detail with regard to the water use requirements of the irrigated agriculture sector present in the area, the aim of this sub-section is merely to create an understanding of the sector and not to provide an extensive and detailed assessment.

The Groot Letaba River catchment is a highly productive agricultural area with mixed farming including cattle ranching, game farming, dryland crop production and a wide variety of crops produced under irrigation. Citrus and sub-tropical fruit are most widely produced under irrigation together with vegetables and other high-value crops such as tea. Agriculture and the irrigation sector in particular, is the main base of the economy of the region and provide the major portion of local employment opportunities.

Irrigation is by far the largest water user and will remain so for the foreseeable future. Numerous irrigation schemes and irrigation boards exist in the catchment, some of which are supplied from storage and others depend on run-of-river abstractions.

Quaternary Catchment	Irrigation (km ²)	Forestry (km²)
B81A	0.7	113
B81B	56.2	241
B81C	11.1	6
B81D	11.1	41
B81E	30.4	13
B81F	79.4	0
B81G	0.8	3
B81H	0.8	0
B81J	0.0	0
B82A	6.1	7
B82B	18.3	8
B82C	10.9	13
B82D	0.3	15
B82G	10.1	0
TOTAL	236.2	460

Table 6: Irrigation and forestry coverage in study area

(Source: DWAF, 2007)

The majority of the irrigation schemes are situated in Greater Tzaneen where the majority of citrus fruit are grown in the District. In both Greater Letaba and Greater Giyani subtropical fruit and some tomatoes are produced. It is therefore clear that there is already a number of agriculture activities taking place in the some areas and the revitalization of the schemes as set out in Table 4, will create additional opportunities for the expansion of agriculture in areas such as Namakgale and Phalaborwa, where agriculture is currently not a strong sector. The revitalisation will in many instances upgrade the systems, provide all the necessary equipment that might current be outstanding from the schemes and improve the overall functioning of the schemes in order to ensure that water is used efficiently.

Irrigation Scheme	Area
Thabina	
Solani	
Berlyn Citrus	Greater Tzaneen
Coombe Bank	
Mariveni	
Naphuno farms	
Mabunda	
Homu	Greater Giyani
Middle Letaba	
Maemetia	Sekgosese
Klipplaatdrift	
Molototsi Mango	
Mokjadji	Greater Letaba

Irrigation Scheme	Area
Modjadji Dairy	
Selwane	Namakgale
Makhushane Diary	
Majeje	Phalaborwa

(Source: Mopani District Municipality, 2007)

3.2.2 Afforestation

The timber industry in the study area includes a significant capital investment in infrastructure including saw mills and provides highly valued employment opportunities. Previous hydrological analyses indicated that afforestation (including 9,300ha indigenous) decreases the mean annual runoff in the system by about 50 million m³ (98mm over 509,000ha) with the maximum impact being on low flow periods during seasons of relatively low rainfall. This impact on stream flow led to controversy involving the irrigation sector and the afforestation industry due mainly to the fact that the amount of water available from the system for irrigation purposes has decreased.

Table 8: Hydrology of the study area

Quaternary Catchment	Rainfall (mm)	Mean annual runoff (million m³/annum)
B81A	1194	63.9
B81B	1163	115.6
B81C	880	17.2
B81D	832	67.3
B81E	667	29.5
B81F	544	18.8
B81G	627	16.2
B81H	510	7.1
B81J	502	5.3
B82A	721	23.2
B82B	702	18.1
B82C	712	14.2
B82D	623	16.5
B82G	524	14.3
TOTAL/AVERAGE	729	427.2

(Source: DWAF, 2007)

3.3 **RDP** WATER RATINGS FOR THE SPECIFIC AREAS IN STUDY

The Department of Water Affairs and Forestry (DWAF) in the Community Water Supply and Sanitation (CWSS) Strategic Study states that the **need for water is measured in the number of people who do not comply with the standards** referred to in the White Paper on Water Supply and Sanitation. These standards are referred to as the RDP level and for the purposes of water supply the following 5 criteria define the minimum RDP level, viz.:

- Quality: 4 water quality classes to qualify the portability of water (e.g. classes 0 and 1 are ideal, class 2 is for short term use only and class 3 is unacceptable for domestic use);
- **Quantity**: a minimum quantity of 25 liter per person per day;
- Distance: water must be within a distance of 200 m from the dwelling/house;
- **Reliability**: access to the water resource for at least 98% of the time (1 in 50 year resource reliability); and
- Flow: the availability or flow of water at a communal tap should at least be equal to 10 liter per minute.

Area in study area	Population	Number of people receiving water below RDP standards	Number of people receiving water greater than RDP standards
Ba-Phalaborwa Area	139 225	5 314	133 911
Greater Giyani Area	253 926	85 179	168 747
Greater Letaba Area	241 914	72 370	169 544
Greater Tzaneen Area	390 887	130 430	260 457
Maruleng Area	97 066	12 777	84 289

Table 9: RDP water ratings for the specific areas in the study area

(Source: DWAF, 2007)

3.4 WATER AVAILABILITY AND REQUIREMENTS

Water is one of the most fundamental and indispensable of all natural resources. It is fundamental to life and the quality of life, to the environment, food production, hygiene, industry, and power generation. The availability of affordable water can be a limiting factor for economic growth and social development, especially in South Africa where water is a relatively scarce resource that is distributed unevenly, geographically and through time, as well as socio-politically.

The gross surface water availability in the study area is estimated at 168 million m^3/a , which is derived from the yield of the Tzaneen and Ebenezer dams as well as significant run-of-river abstractions. The Tzaneen Dam, if operated in isolation, provides a yield of approximately 60 million m^3/a . However, when operated in a systems context to supply water to irrigators downstream only when the run-of-river flows are inadequate, the total yield is much greater. Hence the large gross yield of the system. To meet the requirements of the ecological Reserve, (based on a desktop estimate) means that an estimated 25 million m^3/a , of otherwise available yield must be released into rivers. A comprehensive Reserve Determination was carried out by DWAF for the Groot Letaba River.

Invasive Alien Plants reduce the yield by a further 10 million m^3/a , the available surface water resource is then 133 million m^3/a (at a 1:50 year assurance).

The contribution of groundwater to the available water resource in the study area is estimated to be 12 million m^3/a while the recently completed registration of water use gives the groundwater use as 23 million m^3/a . This groundwater use is mostly downstream of the Tzaneen Dam where it is used to supplement irrigation supplies from surface water during times of drought. In many cases groundwater abstraction takes place close to the river and probably has a direct impact on the surface water flow. This groundwater/surface water dependency needs to be quantified.

Table 10: Water availability in the study area

Resource category	Volume of water available/used (Mm³/a)	
Gross surface water resource:	168	
Subtract:		
- Ecological Reserve	25	
- Alien Vegetation	10	
Net Surface water resource	133	
Ground water	23	
Return flows	14	
Total local yield	170	

(Source: Internal Strategic Perspective compiled by DWAF using 2000 data. Data source provided to Urban-Econ by DWAF in 2007)

3.4.1 Current Water Requirements

The irrigation requirement in the study area is based on an irrigated area of 191 km². Approximately 28 million m^3/a of this requirement occurs upstream of the Tzaneen Dam and is supplied from the Ebenezer Dam (13.9 million m^3/a), the Magoebaskloof Dam (7 million m^3/a) and run-of-river (7.1 million m^3/a). The irrigation requirement downstream of the Tzaneen Dam is 105 million m^3/a . This is supplied partially from the Tzaneen Dam with irrigators making use of run-of-river and the many weirs on the Groot Letaba River to increase the total yield made available from Tzaneen Dam. Some of the irrigation is also supplied from tributaries to the Groot Letaba, farm dams and groundwater.

The irrigators downstream of the Tzaneen Dam generally experience a low assurance of supply with severe restrictions being placed on their water use during periods of drought.

The forestry requirement is based on an afforested area of 417 km², which reduces the runoff by an estimated 50 million m^3/a . This reduces the yield of the system by an estimated 35 million m^3/a as given in Table 11.

(million m ³ /a)
133
3
10
0
35
0
181

Table 11: Local Water Requirements in the study area (1:50 year assurance)

Table 12: Primary water demands (Mm³/a)

Description	Place Name	2000	Allocation 2006/7	Usage 2006/7	Value used for Bridging Study
	Haenertsburg	0.04	0	0	0
	Tzaneen	5.5	2.4+1.2 = 3.6	2.2+1.0 = 3.2	2.4+1.2 = 3.6
	Politsi	0.14	2.0	2.1	2.0
	Duiwelskloof	0.41			
Domestic Use in	Ga-Kgapane	0.35			
Groot Letaba	Letsitele	0.26	0.4	0.3	0.3
of confluence with	Ritavi 1	0.73	0	1.9	1.9
Klein Letaba River	Ritavi 2	2.66	3.5	8.2	8.2
	Naphuno	1.3	1.7	1.3	2.9 *1 (1.3)
	Bolobedu	2.56	0.2	0.2	5.1*2 (0.2)
	Namakgale	Groundwater	0	0.8	0.8
	Sub total	13.95	11.4	18.0	24.8 (18.3)
Domestic Use in Middle and Klein Letaba Catchments	Giyani	0.98	3.7	3.7	3.7
	Cumulative Subtotal	14.93	15.1	21.7	28.5 (22.0)
	Middle Letaba Dam WTW	-	2.3	2.3	2.3
	Subtotal	-	6.0	6.0	6.0
Cumulative Subtotal		-	17.4	24.0	30.8 (28.0)

Description	Place Name	2000	Allocation 2006/7	Usage 2006/7	Value used for Bridging Study
Domestic Use outside			18.5	4.6+18.8=23.4	6.5+12=18.5
of Letaba Catchment	Polokwane				
Subtotal for			35.9	47.4	49.3 (46.5)
Domestic use		-			
Industrial Use		-	3.3	1.5	1.5
Overall total of primary water demands			39.2	48.9	50.8 (48.0)
		(Source: DWAF, 2007)	Source : Various s Bridging Study	sources used to determin	e values adopted in

*1 Based on Historical Firm Yield for Thabinia Dam – for future projections, rather use actual use by Naphuno in 2006/7

*1 Based on Historical Firm Yield for Modjadji Dam – for future projections, rather use actual use by Bolobedu in 2006/7

Several industrial water users occur in the study area which draws water from the Groot Letaba River system. These water user groups are indicated in the table below:

Table 13: Water use by industrial water users

Industry/Mine	Quaternary catchment	Water use in 2000 (million m³/annum)
Letaba Citrus	B81B	0.24
Koedoe Co-op	B81C	0.1
Addington Farm	B81C	0.05
Sapekoe	B81B	0.3
TOTAL		0.69

(Source: DWAF, 2007)

Sapekoe Tea closed down on the 10th of December 2004 due to the fact that the biggest shareholder, Lintonpark pulled out to avoid the strong rand².

Various land claims on the land of Sapekoe also created a number of problems and various initiatives were put in place to resuscitate the business by the Limpopo Government. According to new information obtained it seems that Sapekoe was revitalized as a fruit farm in January 2007 and there are additional plans for the future that might see increased production activity in the future, and therefore should still be regarded as a water user.

3.4.2 Transfers

There are no transfers into the Groot Letaba River sub-area. However, there is a significant transfer out of the sub-area to Polokwane. The bulk of the water for this transfer is sourced from the Ebenezer Dam while Polokwane also transfers water from Dap Naude Dam. According to White Paper WP I – 84, the allocation to Polokwane from the Ebenezer Dam is 18,5 million m^3/a . However, this was later reduced by means of a court order to 12 million m^3/a . Polokwane also have a water court order which allows them to abstract up to 6,53 million m^3/a from the Dap Naude Dam. This is in excess of the historical yield of the dam, which is quoted estimated to be 3,2 million m^3/a (White Paper WP I-84) before making any allowance for the ecological Reserve. The current transfer rate to Polokwane from Ebenezer Dam is approximately 10 million m^3/a .

² SABC News. Sapekoe Tea Plantation Closes Down. 10 December 2004.

There is also a small transfer out of the Letaba catchment downstream of the Tzaneen Dam to the Consolidated Murchison Gold mine near Gravelotte. The allocation for the mine from Tzaneen Dam is 1.8 million m^3/a . The actual transfer to the mine to meet current requirements is estimated at 0,4 million m^3/a and this is not expected to increase in the foreseeable future. Also, about 0,3 million m^3/a is transferred out to domestic users in the Olifants WMA from the Thabina Dam.

The total transfer in 2000 out of the Letaba catchment is summarised as follows:

Polokwane:

- From Ebenezer Dam: 10 million m^3/a
- From Dap Naude Dam: 3,2 million m³/a
- From the Letaba River: 1,8 million m^3/a
- From the Thabina Dam: 0.3 million m³/a
- Total: 15,3 million m^3/a

3.4.3 Reconciliation of Requirements and Available Water

Throughout this document, the problems regarding the scarcity of water in the study area (both primary and secondary) have been discussed and in order to ensure that there is a clear understanding of the full magnitude regarding the water demand issues it is deemed necessary to look at the specifics regarding the available water resources and the water requirements. Table 14 provides more insight into this issue.

Available Water (Mm ³ /a)	Local Yield	170
	Transfer In	0
	Total	170
Water requirements (Mm ³ /a)	Local requirements	181
	Transfers out	15
	Total	196
Balance	-26	

Table 14: Reconciliation of requirements and available water for 2000

(Source: DWAF, 2007)

From the table it is clear that there is already a water deficit. The users who are currently experiencing water shortages are the irrigators downstream of the Tzaneen Dam.

3.5 AFFECT OF HIV/AIDS ON THE POPULATION AND THE RESPECTIVE GROWTH RATES ESTIMATIONS

Before we have a look at possible water use/demand and demography, it is crucial that we have an in-depth look at the effects that HIV/AIDS have on population growth rates and on water usage and demand. The impact of the HIV/AIDS pandemic on future development is cause of great concern to decision makers and planners. The challenge lies in trying to identify and plan for the impact of HIV/AIDS on sustainable development and more specifically, in terms of the Strategic Environmental Assessment (SEA), on water management issues.

The population of Limpopo increased from 4.9 million in 1996 to 5.2 million (11% of the population of South Africa) in 2001. This implies an annual population growth rate of 1.3%. During 2002 the Department of Finance and Economic Development of the Limpopo government made projections for the Development Information Database, namely that the population growth rate is expected to decline to 1.0% by 2008.

B-29

The HIV/AIDS infection in the District Municipality of Mopani, which also makes up the study area, is below that of the Province, but it can still be regarded as significant.

One of the most important considerations that have arisen from the available information on the spread of HIV/AIDS is the difficulty in accurately projecting possible population numbers over a long timeframe. Population projections that extend beyond a five to seven year timeframe contain increasingly larger inaccuracies and should be treated with caution. This is largely due to uncertainties around probable behavioral changes in response to the anticipated massive mortalities that can be expected as the pandemic proceeds. It is essential to remember that any estimates made are likely to underestimate the true prevalence of HIV/AIDS.

3.6 AFFECTS OF HIV/AIDS ON WATER

At first sight, the issues of HIV/AIDS and water would appear to bear very little relation to each other. HIV/AIDS is a global-scale pandemic that is transmitted between people primarily through sexual contact, while water is a renewable natural resource of which the availability depends on a variety of geographic and climate factors. However, a closer inspection of the features that characterize the spread of HIV/AIDS and its implications for individuals, communities and societies reveals several significant linkages with water, as well as important consequences for water resource management. The links between HIV/AIDS and water reflect some of the often unanticipated effects of the pandemic on society, with long-term implications for effective water resource management and the provision of wholesome water supplies to communities.

There is also compelling evidence that the current trends in HIV infection will have a profound impact on future rates of infant, child and maternal mortality, life expectancy and economic growth throughout the region.

Against the background provided by the data on HIV/AIDS prevalence in Southern Africa, it is instructive to examine the availability of water resources and the provision of water supplies and sanitation services. Adequate supplies of fresh water represent one of the scarcest natural resources within Southern Africa and have a clear potential to retard social and economic development.

Some important consequences of the HIV/AIDS pandemic have been most easily visible as the dramatic increase in mortality rates and an equally spectacular reduction in population growth rates. For example, population growth rates in several Southern African countries have decreased by over 50% in the last five years. Clearly, demographic changes of this magnitude can have enormous social, economic and environmental implications for the timely provision of water supplies and sanitation services to both urban and rural communities. Insufficient supplies of water cause unnecessary hardship and stress, while over-provision leads to wastage, environmental damage end economic loss.

Against the background provided by the prevalence of HIV/AIDS and the availability of water resources, problems or 'problem areas' can be identified where HIV/AIDS impinges on water resources management:

- Inaccurate estimates of population growth rates and mortality rates lead to incorrect estimates of water demand in specific geographic areas. In turn, inadequate or incorrect demographic information hinders proper planning and prevents construction schedules from matching water demand profiles.
- Changes in the socio-economic profiles of communities receiving services such as water supplies and sanitation are such that there is widespread difficulty to pay for these services.

- B-30
- Staff members infected with HIV/Aids shows a dramatic decline in productivity as the disease progresses. Additional productivity losses will be attributable to workers having to care for sick family members and relatives, as well as attending funerals.
- Any decline in drinking water quality caused be inadequate water treatment will lead to increased public health risks, particularly for individuals with compromised immune systems.
- There is a small risk that local ground water resources may become contaminated if individuals bury their relatives in areas that are unsuitable for location of graveyards. This practice will also prevent areas from being used for alternative purposes.
- Water is needed for taking antiretroviral medication, bathing patients, washing soiled clothing and linen; and for essential hygiene, which reduces exposure to infections.
- Home-based caregivers undertake a range of activities, including fetching water, bathing
 patients, washing, laundry, digging pits for solid waste disposal, cleaning households and
 yards, assisting with access to social, health and other services, and providing counseling,
 information and support.

If water demand estimates do not take HIV/AIDS-related mortality into account, demands for water could be overestimated. This would pose several possible unanticipated consequences for the construction and operation of large-scale water supply schemes. In particular, if anticipated HIV/AIDS mortalities do indeed reach very high levels, it would delay the demand for water. The converse situation is also important: if mortality rates are overestimated, the growth in water demand profiles of an area or country will not be anticipated correctly. Given the relatively long lead-in times for water supply projects, a population would face undue hardship if adequate water supplies cannot be provided in time.

3.7 SYNTHESIS

From this chapter, it is clear that there are a number of water users dependent on the availability of water to adequately take advantage of the various growth and development opportunities in the area. Additionally the growing population in the area is also placing increased pressure on the water system.

The following chapter provides a more detailed assessment of the water demand projections for the future.

CHAPTER 4 – FUTURE WATER DEMAND ESTIMATES

The aim of this chapter is to combine all the findings of the investigations into the potential water requirements into an integrated assessment and to provide the future population growth projections and link this with the future water demand estimates.

4.1 **POPULATION GROWTH PROJECTIONS**

The calculation of the future demand water estimates were based on the anticipated population growth projections made for the primary study area (which refers to the rural settlements as set out in Section One of this report) and the secondary study area (which refers to the municipal areas of Giyani, Tzaneen and Letaba).

The Census 1996 and 2001 population statistics were used as a basis and the growth rates from 1996 to 2030 were also calculated using that information. In order to ensure that the different development potential and therefore the population growth potential are taken into consideration, it was decided that the best way in which to achieve this was to provide three different population growth scenarios. In order to create some clarity, Table 2 provided in Section 2 of this document is provided again in this chapter.

area							
DISTRICT	1996	2001	Growth Rate 1996 to 2001	2007			
Limpopo Province Total	4,520,529	4,995,533	2.02%	5,632,403			
Mopani District Municipality Total	956,352	1,061,454	2.11%	1,203,125			
Greater Giyani LM Total	217,442	239,283	1.93%	268,364			
Greater Letaba LM Total	202,069	220,105	1.72%	243,819			
Greater Tzaneen LM Total	340,321	375,587	1.99%	422,723			

834,975

131,092

94,385

1,002

759,832

107,813

87,355

1,353

<u>Table 15:</u>	Population	distribution	for	relevant	local	municipalities	in	the	<u>secondary</u>	<u>study</u>
area										

Source: Urban-Econ calculations based on Census 1996 and 2001 data, 2007

TOTAL SUB-AREA

Ba-Phalaborwa LM Total

Kruger Park North LM Total

Maruleng LM Total

Based on the historical performance of the population growth trends in the secondary study area, future growth potential scenarios could be formulated. The following table provides more detail regarding the growth rate scenarios that have been formulated:

Growth Rate Period	Low (negative growth)	Medium (in line with District historical performance)	High (higher positive growth)
growth rate 1996 to 2001	1.52%	2.02%	3.02%
growth rate 2002 to 2005	1.48%	2.06%	3.10%
growth rate 2006 to 2010	1.44%	2.10%	3.18%
growth rate 2011 to 2015	1.40%	2.14%	3.26%
growth rate 2016 to 2020	1.36%	2.18%	3.34%
growth rate 2021 to 2025	1.32%	2.22%	3.42%
growth rate 2026 to 2030	1.28%	2.26%	3.50%

Table 16: Population growth projection scenarios

Technical Study Module : Review of Water Requirements : Volume 2

934,800

165,778

103,571

699

1.**90**% 3.99%

1.56%

-5.83%

The growth scenarios, as set out below comprised three different scenarios namely low, medium and high. The low scenario was based on the premise that population growth will be lower than the growth anticipated based on the historical growth trends between 1996 and 2001. The medium scenario used historical performance as the basis for anticipated growth, and the high scenario anticipated growth patterns higher than the historical performance.

For all three scenarios, the anticipated growth rates were not kept constant, and in the case on the low scenario showed a steady decline in the growth rate, were the medium and high scenarios both showed an incremental growth rate.

It is important to note that the medium growth scenario is anticipated to be the scenario providing growth projections closer to the real situation, but there are various growth aspects that might affect the areas and therefore the inclusion of the high and low scenarios. Using the population future growth estimations scenarios, the estimated future populations for both the primary and secondary areas have been calculated and are set out in the table below:

Year	Growth Rate Scenario	Primary Study Area	Secondary Study Area
2001	Census 2001	N/A	834,975
	Low	713,268	921,070
2007	Medium	723,983	934,906
	High	747,063	964,711
	Low	744,527	961,436
2010	Medium	770,558	995,051
	High	820,623	1,059,702
	Low	798,123	1,030,647
2015	Medium	856,613	1,106,177
	High	963,395	1,244,069
	Low	853,892	1,102,664
2020	Medium	954,144	1,232,123
	High	1,135,394	1,466,178
	Low	911,757	1,177,386
2025	Medium	1,064,862	1,375,097
	High	1,343,288	1,734,640
2030	Low	971,622	1,254,693
	Medium	1,190,755	1,537,667
	High	1,595,405	2,060,208

Table 17: Population growth estimations based on the growth scenarios

Source: Urban-Econ calculations based on Census 1996 and 2001 data, 2007

4.2 WATER DEMAND ESTIMATIONS

In order to calculate the most likely water demand requirements, it is essential to have not only an understanding of the growth potential of the population (as this is but one of the major water users in the area), it is also essential to identify the growth expectations with regard to the additional water users. Due to the lack of updated information, this report was based on secondary sources where applicable, and it seems that most of the other water users have stayed constant. It has therefore been determined that with regard to water users, for calculating the water demand estimations until 2030, the following assumptions were put in place:

- Irrigation will stay constant
- Domestic usage will increase in line with population growth
- Industrial and mining will remain constant
- Afforestation will remain constant
- Power Generation will remain constant
- Payment for water consumed has a major impact on the actual volume of water used by residents. If residents have to start paying for water due to the services that they receive, the actual water use may decline. For the purpose of estimating future water demand in this study, in the absence of more updated actual water use information, it was assumed that the situation will stay more or less the same.

The remainder of this section will provide insight into two models that were utilised in to determine the future water requirements within the study area and the specific implications of the increasing population figures on the water situation.

Method 1: Total population growth and water demand implications

The aim of method one is to determine the overall increase that can be expected as a result of the increase in population within the Secondary Study Area. The aim of the method is to use the growth rates associated with population growth and translate that into impact on water demand.

Year	Population Estimates			Population growth rates			Domestic water requirement (Mm³/a)		
	Low	Medium	High	Low	Medium	High	Low	Medium	High
2007	921,070	934,906	964,711	N/A	N/A	N/A	22.0	22.0	22.0
2010	961,436	995,081	1,059,702	4.38%	6.44%	9.85%	22.96	23.42	24.17
2015	1,030,647	1,106,177	1,244,069	7.20%	11.16%	17.40%	24.62	26.03	28.37
2020	1,102,664	1,232,123	1,466,178	6.99%	11.39%	17.85%	26.34	28.99	33.44
2025	1,177,386	1,375,097	1,734,640	6.78%	11.60%	18.31%	28.12	32.36	39.56
2030	1,254,693	1,537,667	2,060,208	6.57%	11.82%	18.77%	29.97	36.18	46.98

Table 18: Water Requirements 2030 according to Method 1

(Source: Urban-Econ Calculations from DWAF and Census 2001, 1996 Statistics)

From the preceding table it is clear that the water demand can increase from 22.00 million m^3/a in 2007 to as much as 46.98 million m^3/a in 2030 in the medium growth scenario. It should however be noted that in some instances this can be regarded as being a very low demand estimate due to the fact that water demand can increase or decrease depending on the development situations present in the area.

Method one is based on the three growth scenarios formulated for the secondary study area, while method two is based on actual data provided by DWAF in terms of population statistics. In some instances this leads to negative growth rates, but again it should be noted that the data used was provided by DWAF. Method one might therefore be regarded as the more accurate water demand projections.

<u>Table 19: Total Water Requirements in 2030 according to Method 1 (using the medium scenario population growth projections)</u>

User sector	Water requirement/Impact on yield (Mm³/a)
Irrigation	133
Domestic	46.98
Afforestation	35
Industrial	0.69
Power Generation	0
Total local requirements	215.67

(Source: Urban-Econ Calculations from DWAF Statistics)

<u>Table 20: Reconciliation of Requirements and Available Water in 2030 – according to</u> <u>Method 1:</u>

Available Water (Mm ³ /a)	Local Yield	170
	Transfer In	0
	Total	170
Water requirements (Mm ³ /a)	Local requirements	215.67
	Transfers out	15
	Total	230.67
Balance	-15.0	

(Source: Urban-Econ Calculations from DWAF statistics)

According to method 1, the above water balance indicates that according to the current population growth rates, the total deficit will reach -15.0 million m³/a by the year 2030.

Method 2: Anticipated water demand according to population growth in specific areas

The aim of method two is to determine the overall increase that can be expected as a result of the increase in population within specific areas set out in the table below. The aim of the method is to use the growth rates associated with population growth and translate that into impact on water demand.

Domestic use	Growth*1	1995*1	2000*1	2007	*2	2010*2	2020*2	2030*2
Haenertsburg	5.92	0.03	0.04	0.0)	0.00	0.00	0.00
Tzaneen	6.84	3.95	5.5	3.6	5	4.39	8.51	16.49
Politsi	0.00	0.14	0.14	0.31		0.31	0.31	0.31
Duiwelskloof	5.08	0.32	0.41	0.91	2.0	1.06	1.74	2.85
Ga-Kgapane	-5.32	0.46	0.35	0.78		0.66	0.38	0.22
Letsitele	5.39	0.2	0.26	0.3	3	0.35	0.59	1.00
Ritavi 1	0.28	0.72	0.73	1.9	7	1.92	1.97	2.03
Ritavi 2	-2.31	2.99	2.66	8.2	2	7.64	6.05	4.79
Naphuno	-1.33	1.39	1.3	1.3	3	1.25	91.09	0.96
Bolobedu	-1.06	2.7	2.56	0.2	2	0.19	0.17	0.16
Giyani	1.05	0.93	0.98	3.7	7	3.82	4.24	4.70
Namakgale	GROUND WATER			0.8	3	0.80	0.80	0.80
TOTAL	1.32	13.8	14.93	22.0)	22.39	25.86	34.31

Table 21: Water Requirements selected years according to Method 2 (using area specific historical growth trends)

(Source: *1 Urban-Econ Calculations from DWAF statistics

*2 Urban-econ Calculations using DWAF population growth rates and demands used in Bridging Study)

Table 22: Water Requirements in 2030 according to Method 2 (using area specific historical growth trends)

User sector	Water requirement/Impact on yield (Mm³/a)
Irrigation	133
Domestic	34.31
Afforestation	35
Industrial	0.69
Power Generation	0
Total local requirements	203.0

(Source: Urban-Econ Calculations from DWAF statistics)

<u>Table 23: Reconciliation of Requirements and Available Water in 2030 – according to Method</u> <u>2 (using area specific historical growth trends)</u>

Available Water	Local Yield	170
	Transfer In	0
	Total	170
Water requirements	Local requirements	203.0
	Transfers out	15
	Total	218
Balance	-48.0	

(Source: Urban-Econ Calculations from DWAF statistics)

According to method 2, the above water balance indicates that according to the current population growth rates, the total deficit will reach -48 million m^3/a by the year 2030.

<u>Method 3: Anticipated water demand according to the medium population growth scenario in</u> <u>specific areas</u>

The aim of method three is to determine the overall increase that can be expected as a result of the increase in population within specific areas according to the three growth scenarios formulated as part of the method one approach. The aim of the method is to use the growth rates associated with the medium population growth scenario in the greater secondary study area and translate that into impact on water demand. This alternative method is used in order to compensate for the fact that the historical growth trends used in Method 2 in some cases indicate a negative growth in water demand – which might not be reflecting the true situation.

Therefore the following table provides the water demand for selected area and selected years based on the high, medium and low scenarios used in method one.

Demestienes	Water Requirement (Mm ³ /a)								
Domestic Use	1995	2000	2007	7	2010	2015	2020	2025	2030
Haenertsburg	0.03	0.04	0.0)	0.00	0.00	0.00	0.00	0.00
Tzaneen	3.95	5.5	3.6	-	3.83	4.26	4.74	5.30	5.92
Politsi	0.14	0.14	0.31		0.33	0.37	0.41	0.46	0.51
Duiwelskloof	0.32	0.41	0.91	2.0	0.97	1.08	1.20	1.34	1.50
Ga-Kgapane	0.46	0.35	0.78		0.83	0.92	1.03	1.14	1.28
Letsitele	0.2	0.26	0.3		0.32	0.35	0.40	0.44	0.49
Ritavi 1	0.72	0.73	1.9	1	2.02	2.25	2.50	2.79	3.12
Ritavi 2	2.99	2.66	8.2		8.73	9.70	10.81	12.06	13.49
Naphuno	1.39	1.3	1.3		1.38	1.54	1.71	1.91	2.14
Bolobedu	2.7	2.56	0.2		0.21	0.24	0.26	0.29	0.33
Giyani	0.93	0.98	3.7		3.94	4.38	4.88	5.44	6.09
Namakgale			0.8		0.85	0.95	1.05	1.18	1.32
TOTAL	13.8	14.93	22.0	0	23.42	26.03	28.99	32.36	36.18

<u>Table 24: Water Requirements for selected years according to Method 3 (using the medium growth scenario formulated as part of Method 1)</u>

(Source: Urban-Econ Calculations from DWAF statistics)

Table 25: Water Requirements in 2030 according to Method 3 (using the medium growth scenario formulated as part of Method 1)

User sector	Water requirement/Impact on yield (Mm³/a)
Irrigation	133
Domestic	36.18
Afforestation	35
Industrial	0.69
Power Generation	0
Total local requirements	204.87

(Source: Urban-Econ Calculations from DWAF statistics)

Table 26: Reconciliation of Requirements and Available Water in 2030 – according to Method 3 (using the medium growth scenario formulated as part of the method one approach)

Available Water (Mm ³ /a)	Local Yield	170
	Transfer In	0
	Total	170
Water requirements (Mm ³ /a)	Local requirements	204.87
	Transfers out	15
	Total	
Balance	-49.87	

(Source: Urban-Econ Calculations from DWAF statistics)

According to method 3, the above water balance indicates that according to the current population growth rates, the total deficit will reach -50 million m^3/a by the year 2030.

4.3 CONCLUSION

The various population growth scenarios and the related methods employed to determine the most likely water demand requirements that will be experienced by the study area, all have one thing in common. The area for which water planning must be done is growing and water is becoming an increasing problem.

The results of the water demand projections done by using all three methods indicate an ever increasing population which translates directly into an increased demand for water.

The information is mostly based on secondary data, but it is regarded as being sufficient for the purpose of the current study. The overall aim of the study was to review and update the water demand projections done as part of the 1998 Main Feasibility Report. The current report investigated various ways in which to determine the growth potential of the area and translate that into water demand projections.

CHAPTER 5 – CONCLUSION AND RECOMMENDATIONS

The following are the main issues in the study area:

- Substantial run-off is generated in the upper reaches of the study area but forestry has a significant impact on this. Dams such as Tzaneen, Ebenezer and Magoebaskloof result in substantial utilizable yield in this catchment. The catchment as a whole is in deficit although users upstream of the Tzaneen Dam enjoy a relatively high level of assurance while users downstream experience shortages.
- Irrigation has developed and expanded to fully utilise the water resources (prior to any allowance for the ecological Reserve). These are mostly perennial high-value crops. Financial losses during droughts have resulted in a need for more efficient water use by irrigators. Current schemes are reportedly very efficient and well managed but there is also some upliftment programmes planned for some of the less efficient irrigations schemes. Large-scale afforestation in the upper catchments has a large impact on the water resources.

Domestic water users occur all over the study area in urban and non-urban environments. Extensive development has occurred in the study area and due to shortages in domestic supply it is clear that additional storage is required. This becomes even more critical in the year 2030 due to the growth anticipated in the domestic demand.

The total water requirements as set out in this document by 2030 is estimated between 205.98, 218.16 and 341.78 million m³ per annum according to method 1, 2 and 3 respectively.

LIST OF BIBLIOGRAPHY

Department of Provincial and Local Government, 2003. IDP-Nerve Centre: Executive Summary. [Web:] http://www.pimss.net [Date used: 1 June].

Department Of Water Affairs and Forestry, 2007. Luvuvhu and Letaba ISP (Report No: P WMA 02/000/0203). The Directorate National Water Resource Planning.

Integrated Development Plan For Mopani District Municipality. 2005. Document prepared by the Mopani District Municipality.

Local Economic Development Plan for Mopani District Municipality. 2005. Document prepared by the Mopani District Municipality.

Municipal Demarcation Board, 2007. Municipal Profiles 2007. Mopani District Municipality.

Statistical Information, Quantec Research (Pty) Ltd

Appendix C : Irrigation Assessment – Schoeman & Vennote

GROOT LETABA RIVER WATER RESOURCE DEVELOPMENT PROJECT: POST FEASIBILITY BRIDGING STUDY IRRIGATION ASSESSMENT

EXECUTIVE SUMMARY

Schoeman & Vennote was previously appointed by the Department of Water Affairs and Forestry: Sub Directorate- Abstraction and Storage to conduct field surveys on all farms situated within the Great Letaba River Catchment Area for abstraction and storage control in terms of Section 9B(1C) of the Water Act (Act 54 of 1956). The findings of these surveys are fully described in report B0301/2 dated June 2007, submitted to the said Sub Directorate.

The total annual water use for each property was determined based on the type of crop under irrigation and corresponding irrigation requirements determined through SAPWAT with a target irrigation efficiency of 85%.

Water abstracted from groundwater (32 922 058 cubic metres) represents 16.1% of the total annual volume of water abstracted for irrigation. Some 171 670 318 cubic metres of water or 83.7% of the total annual volume is abstracted from the surface water resources.

The monthly abstraction for irrigation purposes peaks in September during which some 23 137 747 cubic metres of water (11.5% of annual total) is abstracted from all resources.

In terms of both area under irrigation (35.3%) and annual water use (39.1%), Citrus is the main crop under irrigation followed by Mangoes and Avocados.

The results of the survey were subsequently analysed to create information in a format useful for further hydrological modelling. Time series of irrigation demands were generated for quaternary catchments and for smaller quinary catchments.

GROOT LETABA RIVER WATER RESOURCE DEVELOPMENT PROJECT: POST FEASIBILITY BRIDGING STUDY IRRIGATION ASSESSMENT TABLE OF CONTENTS

Page

1.	INTR	ODUCT	ON	4
2.	PURI	POSE O	F THIS STUDY	4
3.	PURI	POSE O	F THIS REPORT	4
4.	INFO	RMATIC	ON GATHERING AND DATA PREPARATION	5
5.	DES	CRIPTIO	N OF THE STUDY AREA	5
6.	IRRIG	GATION	DEVELOPMENT	5
7.	GIS (ATION	7
8.	IRRIG	GATION	WATER REQUIREMENTS	7
	8.1	SUMMA	\RY	7
	8.2	REPRE	SENTATIVE CROP	8
	8.3	RAINFA	\LL	8
	8.4	EVAPO	TRANSPIRATION	8
	8.5	SAPWA	T MODEL	9
	8.6	IRRIGA	TION REQUIREMENT TIME SERIES	9
	8.7	ACTUA	L IRRIGATION USAGE	9
	8.8	IRRIGA	TION EFFICIENCY 1	0
	8.9	ABSTR	ATION RATE 1	0
	8.10	CROP F	ACTORS 1	0
	8.11	MODEL	INTERFACE 1	0
	8.12	RETUR	N FLOWS 1	0
	8.13	DETAIL	ED ANALYSES 1	1
		8.13.1	Representative crop1	1
		8.13.2	Generation of time series records 1	5

	8.14	MODEL	INTERFACE	19
	8.15	RESUL	TS	19
		8.15.1	Rainfall	19
		8.15.2	Average annual irrigation requirements	22
		8.15.3	Required abstraction rates	23
		8.15.4	Proposed irrigation quota	24
		8.15.5	Crop factors	25
a	CON	CLUSIO	NS	27
J.	001			21
	9.1	IRRIGA	TION AREAS AND WATER SOURCES	27
	9.2	IRRIGA	TION VOLUMES	27

ANNEXURES

Annexure A: Fixed Area Irrigation Demand Time Series

LIST OF ABBREVIATIONS

DWAF	Department of Water Affairs and Forestry
FAO	Food and Agriculture Organisation
GIS	Geographical Information System
PSP	Professional Service Provider
WARMS	Water Authorisation and Resource Management System
WRSM2000	Water Resources Simulation Model or Pitman model
WRYM	Water Resources Yield Model
SAPWAT	SAPWAT is a computer program used for estimating crop irrigation
	requirements in South Africa and has been released as Water Research
	Commission Report No. 624/1/99. The program combines crop and climatic
	databases that enable the water manager to develop realistic estimates that
	reflect the complex factors that determine average monthly crop water
	requirements. The program contains extensive default information on crops,
	climate, soil, irrigation methods and management practices.

1. INTRODUCTION

The Department of Water Affairs and Forestry (DWAF) initiated a study "*Groot Letaba River Water Resource Development Project: Post Feasibility Bridging Study*". The study area covers the Groot Letaba River catchment.

This report is an assessment of the water required for irrigation within the study area. The assessment is based upon the findings of a previous study completed for DWAF: Sub Directorate- Abstraction and Storage. In that study field surveys on all farms situated within the Great Letaba River Catchment Area were done for abstraction and storage control in terms of Section 9B(1C) of the Water Act (Act 54 of 1956). A total of 2843 properties were surveyed between August 1994 and November 2001. The main focus was to gather information on property owners, survey all water works in order to determine their abstraction/storage capacities and to determine the land use on each property in terms of arable and irrigated land. The total average annual water use for each property was determined based on the type of crop under irrigation and corresponding irrigation requirements determined through SAPWAT with a target irrigation efficiency of 85%. That study covered all of the Groot Letaba catchment, but excluded the Politsi Government Water Control Area. The Politsi area excluded covers the irrigation area served by the Magoebaskloof Dam.

2. PURPOSE OF THIS STUDY

The main tasks and objectives of this study are as follows:

- To identify areas under irrigation using the data obtained during the field survey study and to determine the associated irrigation water requirements.
- To generate two separate monthly time series in hydrological years (from October 1925 to September 2006) for the abstraction of water for irrigation purposes. The first series is based on historical requirement, i.e. the real growth in irrigation requirement over the period. The second series is based on present day irrigation requirement i.e. as if the current irrigation existed since 1926 and remained constant over the whole period.

3. PURPOSE OF THIS REPORT

The purpose of this report is to present the following:

- A description of the data sources used.
- A description of the steps and processes followed during the determination of irrigation requirements.
- Analyses of water use and water requirement for irrigation in the Great Letaba River Catchment.

4. INFORMATION GATHERING AND DATA PREPARATION

The irrigation assessment for the entire B81 tertiary catchment, excluding the Politsi Government Water Control Area, was done as the major task for this study. Data was prepared to be used in the Water Resources Yield Model (WRYM).

Updated rainfall data was obtained from the modellers, and the overlapping period of October 1925 to September 2006 was used in further analyses.

Only the data available from the filed survey study was used in further analyses. As most of the irrigation from surface water resources are controlled by allocations determined under the previous Water Act, 1956 the irrigation demands have stabilised over the past number of years. No new irrigation development with surface water resources were allowed, and irrigation from boreholes was also limited to the level of the 1998 development when the National Water Act was introduced. It is therefore accepted that no meaningful changes occurred in the irrigation development since the completion of the field surveys in 2001.

5. DESCRIPTION OF THE STUDY AREA

The Great Letaba River is situated within the Levuvhu/Letaba Water Management area in the Limpopo Province. The Great Letaba and Little Letaba Rivers join one another at the boundary of the Kruger National park and thereafter the river is known as the Letaba River. The Letaba River flows into the Olifants River just before the Olifants River crosses the border of Mozambique.

The area stretches from Haenertsburg in the southwest past Tzaneen and Duiwelskloof (north of Tzaneen), and further in an eastern direction past Letsitele, "Die Eiland" Holiday Resort up to the Kruger National Park at the confluence of the Great Letaba and Klein-Letaba Rivers. The river is known as the Letaba River downstream of the said confluence.

The area originates in the upper course of the Broederstroom on the farm Grootbosch. It continues in a southern direction for approximately 22km along the Broederstroom past the Dap Naude Dam up to the Ebenezer Dam. Downstream of the Ebenezer Dam, the river is known as the Great Letaba River, which stretches further northeast for roughly 24km up to the Tzaneen Dam. From the Tzaneen Dam, the Great Letaba River extends in an eastern direction for some 30km up to where the Letsitele connects from a southern angle, and for some 22km northwest where the Nwanedzi joins from a northwestern direction. The Great Letaba River continues with its trajectory in a north-eastern direction for approximately 21km where the Lerwatlou conjoins from a northern angle and for some 42km east up to where the Molototsi connects from the North. Lastly this river carries on for about 32km east, up to the confluence with the Little-Letaba River on the farms Letaba Ranch and M'Baula Ranch.

6. IRRIGATION DEVELOPMENT

By using the information obtained from the field survey the annual irrigated areas per quaternary drainage and sub-drainage level were determined. These values were

provided to the team responsible for the updating of the hydrology and systems yield models. The results for 2004 are shown in **Table 6-1**:

	CROP AREA DEVELOPMENT											
	SURFAC	CE WATER	BOREHO	LE WATER	OTHEF	RWATER	TOTAL	WATER				
	DEVELO	PMENT (ha)	DEVELO	PMENT (ha)	DEVELO	PMENT (ha)	DEVELO	PMENT (ha)				
Quaternary	Quinary	2004 area	Quinary	2004 area	Quinary	2004 area	Quinary	2004 area				
B81A	B81A01	443.94	B81A01	0.00	B81A01	0.00	B81A01	443.94				
DUIA	Total	443.94	Total	0.00	Total	0.00	Total	443.94				
	B81B01	2306.64	B81B01	237.64	B81B01	57.77	B81B01	2602.05				
	B81B10	93.23	B81B10	0.00	B81B10	0.00	B81B10	93.23				
	B81B12	158.77	B81B12	6.61	B81B12	0.00	B81B12	165.38				
B81B	B81B14	544.12	B81B14	1.66	B81B14	0.00	B81B14	545.78				
	B81B16	197.93	B81B16	2.62	B81B16	0.00	B81B16	200.55				
	B81B20	69.69	B81B20	0.00	B81B20	0.00	B81B20	69.69				
	B81B30	617.74	B81B30	95.68	B81B30	5.10	B81B30	718.52				
	Total	3988.12	Total	344.21	Total	62.87	Total	4395.20				
	B81C01	1534.36	B81C01	0.00	B81C01	8.25	B81C01	1542.61				
B81C	B81C10	1932.64	B81C10	378.76	B81C10	0.00	B81C10	2311.40				
	B81C15	1043.62	B81C15	62.96	B81C15	0.00	B81C15	1106.58				
	Total	4510.62	Total	441.72	Total	8.25	Total	4960.59				
	B81D01	806.81	B81D01	19.06	B81D01	0.00	B81D01	825.87				
	B81D10	392.48	B81D10	8.94	B81D10	0.00	B81D10	401.42				
B81D	B81D13	281.04	B81D13	0.00	B81D13	0.00	B81D13	281.04				
	B81D16	1758.46	B81D16	13.92	B81D16	0.00	B81D16	1772.38				
	B81D28	335.04	B81D28	32.56	B81D28	0.00	B81D28	367.60				
	Total	3573.83	Total	74.48	Total	0.00	Total	3648.31				
	B81E01	4364.01	B81E01	428.12	B81E01	0.00	B81E01	4792.13				
	B81E10	698.72	B81E10	139.40	B81E10	0.00	B81E10	838.12				
	B81E20	630.15	B81E20	212.32	B81E20	0.00	B81E20	842.47				
B81E	B81E23	321.92	B81E23	96.97	B81E23	0.00	B81E23	418.89				
	B81E25	1125.44	B81E25	470.86	B81E25	0.00	B81E25	1596.30				
	B81E30	303.82	B81E30	50.58	B81E30	0.00	B81E30	354.40				
	Total	7444.06	Total	1398.25	Total	0.00	Total	8842.31				
	B81F01	1053.36	B81F01	219.65	B81F01	0.00	B81F01	1273.01				
	B81F10	324.84	B81F10	48.62	B81F10	0.00	B81F10	373.46				
B81F	B81F20	597.07	B81F20	301.20	B81F20	0.00	B81F20	898.27				
	B81F30	1858.68	B81F30	1104.84	B81F30	8.28	B81F30	2971.80				
	Total	3833.95	Total	1674.31	Total	8.28	Total	5516.54				
	B81G01	283.06	B81G01	318.82	B81G01	0.00	B81G01	601.88				
B81G	B81G10	159.31	B81G10	9.26	B81G10	0.00	B81G10	168.57				
	Total	442.37	Total	328.08	Total	0.00	Total	770.45				

Table 6-1: Irrigation Areas (ha)

Technical Study Module : Review of Water Requirements : Volume 2

		CROP AREA DEVELOPMENT											
	SURFAC	E WATER	BOREHO	LE WATER	OTHER	WATER	TOTAL	WATER					
	DEVELOP	MENT (ha)	DEVELOF	PMENT (ha)	DEVELOP	MENT (ha)	DEVELOPMENT (ha)						
Quaternary	Quinary	2004 area	Quinary	2004 area	Quinary	2004 area	Quinary	2004 area					
	B81H01	34.97	B81H01	72.24	B81H01	0.00	B81H01	107.21					
B81H	B81H10	73.19	B81H10	65.78	B81H10	0.00	B81H10	138.97					
	Total	108.16	Total	138.02	Total	0.00	Total	246.18					
	B81J01	0.00	B81J01	18.41	B81J01	0.00	B81J01	18.41					
B81J	B81J10	520.65	B81J10	0.00	B81J10	0.00	B81J10	520.65					
	Total	520.65	Total	18.41	Total	0.00	Total	539.06					

TOTAL 24865.70 TOTAL 4417.48 TOTAL 79.40 TOTAL 29362.58								
	TOTAL	24865.70	TOTAL	4417.48	TOTAL	79.40	TOTAL	29362.58

7. GIS COMPILATION

All information used, compiled and generated during the project were standardised and linked to the GIS. The GIS information was provided in Arc View shape file format and included inter alia:

- Farm boundaries
- o Property
- Populated places, Towns and Municipal boundaries
- Quaternary catchments
- Sub catchments
- o Rivers
- o Satellite images
- o 1:50 000 topo cadastral reference grid

8. IRRIGATION WATER REQUIREMENTS

8.1 SUMMARY

In this part of the study, the theoretical water requirement of the identified irrigation development was determined. Following this, the actual practical situation was assessed, taking cognisance of on-farm irrigation system efficiency, the effect of droughts on the theoretical irrigation demands and the expected return flows from irrigated fields back to the water resource(-s).

The quaternary catchment was used as the basic unit for output in the study. On request of the modellers, the quaternary catchments were subsequently divided into smaller sub catchments for modelling purposes. Time series, on a monthly resolution, were generated for the theoretical irrigation demands and the practical ("actual") demands, based on both a growth model and a fixed model of irrigation development in every catchment.

In the growth model, the start date of the available rainfall record was used as the base date of the development. From this point the irrigation development was increased up to the date of the present assessment. The growth in irrigation area is not necessarily linear, and in this model it was based on discovered external influences, such as the

introduction of awareness programs, changes in cropping patterns, introduction of electricity and the establishment of Irrigation Boards.

In the fixed model, the current irrigation development was retained as fixed over the total time span of the rainfall record, and the time series of demand were analysed statistically to discover to what level of assurance the current irrigation development can be entertained. A quota per field area, based on an acceptable level of assurance, was determined for every catchment from a statistical analysis of the long term irrigation requirements as determined from the fixed model.

This model also calculated the abstraction rate that should be allowed in each quaternary catchment.

The typical monthly crop factors for use with Penman-Monteith ET_0 reference evaporation were also calculated by using the fixed model.

8.2 **REPRESENTATIVE CROP**

The field survey was scrutinised to determine the type of crop, the irrigation system, the area, the water source and the quaternary catchment of each surveyed irrigation field in the project area.

The aim of this exercise was to facilitate the definition of a representative crop that mimics the effect of all the crops and irrigations systems within a particular quaternary or smaller subcatchment.

8.3 RAINFALL

Rainfall records were incorporated in the irrigation demand model to determine a time series of irrigation demands. The extended records, as provided by the modelling teams were used.

The rainfall records were converted into records of effective rainfall (i.e. effective for irrigation fields) by using the methods used in the SAPWAT program These records were used in conjunction with the SAPWAT model to determine the irrigation demands.

8.4 EVAPOTRANSPIRATION

The monthly Penman-Monteith evapotranspiration grids available from the South African Atlas of Climatology and Agro-hydrology (Schulze et al 2006) were analysed to determine the representative monthly evapotranspiration per quaternary catchment. From these values, the average and median daily evaporation values were generated as inputs into the SAPWAT model.

8.5 SAPWAT MODEL

Using the median rainfall records (actual, not effective) together with the daily evapotranspiration records, a driver climatic station was generated for each quaternary catchment. By using this approach, the number of usable SAPWAT climate stations was increased from the original 350 to some 1946 countrywide, without sacrificing any accuracy. The use of a driver station per quaternary catchment resulted in 9 climate stations for this catchment.

Only the basic front end of the SAPWAT model was used in this exercise. No attempt was made to improve the generic data used in the basic front end with further refined soil data, rooting depths, scheduling techniques or refined irrigation practices. The results from the basic front en analysis were captured from the text files that the SAPWAT model generated. Data for both "with rain" and "without rain" were captured and further analysed.

8.6 IRRIGATION REQUIREMENT TIME SERIES

A model was set up to deliver the required irrigation requirement time series. In the first part of the model, irrigation fields with the same crop and irrigation system were lumped together per quaternary catchment. SAPWAT was then used to determine the irrigation requirements, both with and without taking rainfall into account.

The SAPWAT results were fed back into the demand model, resulting in a monthly irrigation requirement for every crop/system combination in each quaternary catchment. The results excluding rainfall were subsequently used in the model to determine the monthly irrigation requirement time series and to quantify required abstraction rates.

The record generation part of the model used the "SAPWAT without rainfall" results together with the effective rainfall records generated earlier to determine the monthly records of irrigation requirements. This part of the model allowed for the generation of different sets of records for different water sources or water resources. Different records were generated for surface water, borehole water and other water sources. A complete set of records was generated for each quaternary catchment. Such a set of records consists of results per water resource, both for the growth model and fixed model described earlier.

8.7 ACTUAL IRRIGATION USAGE

Recognising that during periods of water scarcity the total irrigation requirements will most probably not realise as irrigators postpone planting dates until the first rain falls, or even not irrigate at all during a particularly dry year, it was deemed necessary to reduce the requirements to be balanced with the expected irrigation practices. The model took this into account by calculating a "drought reduction factor" and subsequently created "actual" irrigation usages based on expected irrigation patterns. The algorithm for this process was based on the mean monthly and the mean annual rainfall in the respective quaternary catchments.

The model generated time series of actual irrigation usage, both for the growth model and fixed model for each quaternary catchment.

It must be stressed that this approach has only been thought through for irrigation in the catchments of the northern part of the country (north of the Orange River). In these parts of the country, irrigation is normally supplemental to rainfall, as the extent of the rainfall is such that it should normally be taken into account. In other parts of the country where rainfall is lower or more erratic, a different approach may be contemplated.

8.8 IRRIGATION EFFICIENCY

Based on the outcomes of the field survey, a representative efficiency of 85% was adopted for all irrigation systems in this area.

8.9 ABSTRATION RATE

This output of the study was the required abstraction rate in l/s/ha for each quaternary catchment. These results may be used as licence conditions during future licensing of water use in the area.

8.10 CROP FACTORS

The output of this part of the study was the calculated Penman-Monteith crop factors for the representative crop, planting dates and irrigation strategies per quaternary catchment.

8.11 MODEL INTERFACE

This output was the evaluation of the return flows generated from the irrigated fields. The return flows were defined as a portion of the total in-field irrigation losses. The weighted average results for every crop/system combination were fed back into the demand model, resulting in a monthly return flow time series for each quaternary catchment.

8.12 RETURN FLOWS

The final output of the model was a spreadsheet interface that allows the user the input of variables, such as irrigated areas, return flow fractions and return flow limitations. It also allows for the calculation of proposed irrigation quotas per field area. The generated time series for any combination of the parameters are included in the model.

8.13 DETAILED ANALYSES

8.13.1 Representative crop

The first task in identifying the representative crop was the analysis of the depth of irrigation required for the crop/system combination in the relevant quaternary catchment. The process is shown schematically in **Figure 8-1**:

Figure 8-1: Irrigation depth analysis

The survey information was used to do a normal SAPWAT determination of the irrigation requirements. For each unique crop/irrigation combination, a SAPWAT calculation was completed. During this process, details pertaining to the crop name, planting date, length of the growing period, season during which the crop is cultivated, crop cover, irrigation system and wetted area were fed into SAPWAT. The resultant text file created by SAPWAT named "summary.dat" was then renamed with a numerical prefix and the suffix "csv" and the renamed file saved with the data of that particular catchment. A typical file name would be "23.csv", which is the file of the 23rd crop combination for that particular catchment.

The data from the said text file was subsequently imported into a worksheet for further analysis. Data for both rainfall included and rainfall excluded were imported. The two-sheet worksheet was further populated with the registered crop area under irrigation for every crop combination. This worksheet was generically named to reflect the relevant quaternary catchment. A typical name would be "Registered B81A.xls", where B81A is the quaternary catchment.

The first sheet on the said worksheet computes the total annual depth of irrigation required for each crop combination. It furthermore computes the maximum net daily depth of irrigation required both for "with rain" and "without rain". These depths are then converted to a required continuous abstraction rate, expressed in litres per second per hectare. The net required abstraction rate is then converted to a practical value by limiting the total available hours per week from 168 to 144. The resultant practical abstraction rate (for the case that excludes rainfall) is the suggested allowable abstraction rate for licensing purposes. In the model, these calculations are included in a sheet called Reg_Crops_mm.

The second task in the identification of the representative crop was an analysis of the irrigation volumes required. This process is shown schematically in **Figure 8-2**:

Figure 8-2

This task follows on the previous task. As SAPWAT does not provide for the analysis of a time series of records, it was necessary to create a demand excluding rainfall, from which the effective rainfall record can be subtracted, resulting in a time series of irrigation demands. The shortcoming in this method is that the irrigation demands are quantified using average values of evaporation. Although not strictly accurate, this is presently the best approach available, as no representative time series of evaporation is yet available. The same crop and other data as described above, is used in this task. The crop area was multiplied by the depth of irrigation required to obtain monthly volumetric values based on the requirement with rainfall excluded. The volumetric demands for every crop combination were calculated and aggregated per month. The monthly totals were then divided by the total crop areas, resulting in a weighted average monthly demand per crop hectare. These results were then converted back to irrigation depths in millimetre per month for further use in the model. These results mimic the monthly irrigation demand (rainfall excluded) for all of the crop combinations occurring within the relevant quaternary catchment. It therefore defines a single crop representing the effect of all crop combinations. This imaginary crop is called the representative crop.

The seasonal classification of the crop combination made it possible to determine the actual field sizes. Although for all of the permanent crops the field sizes equal the crop areas, this is not necessarily true for seasonal crops. Some of the winter crops are cultivated on the same fields that were used for summer crops. In order to express the irrigation demand in terms of a quota per field area, it was deemed necessary to determine the actual field sizes as accurately as possible. In the model the smallest of either the winter or summer crop areas were deemed also to be irrigated during the alternate season. In the whole of the project area it was found that the sometimes the winter areas and sometimes the summer areas governed this decision. This resulted in the assumption that the field areas might be calculated by adding the largest of the summer or winter areas to the permanent areas. This resultant field area was called the "quota area" in the model. A further factor, called the "quota factor" was developed to facilitate further calculations in the model. The guota factor was calculated by dividing the total crop area by the quota area. In any particular quaternary catchment dividing the total crop area by the quota factor will thus result in the actual field area for that catchment. Dividing the irrigation demand by the quota factor will result in the demand per field hectare.

The SAPWAT irrigation demands include the effect of the efficiency of the relevant irrigation systems. In this study an efficiency of 85% was accepted. This representative efficiency was subsequently used in the model used to calculate the representative crop evapotranspiration factor (Etc).

The final part of this task analysed the potential return flows from the crop areas. The hypothesis was that 50% of the difference between the irrigation requirement and the crop water requirement will be available as return flows. These calculated values were once again aggregated on an annual basis. Dividing the aggregated return flows by the total crop area within the relevant catchment resulted in a weighted return flow percentage per crop hectare. This value was used further down in the model to determine a time series of monthly return flows. In the model, these calculations are included in a sheet called Reg_Crops_m³.

8.13.2 Generation of time series records

The defining driver for all of the time series records generated by the model was the rainfall record for each quaternary catchment. These records were obtained from the modellers. The full set of records used contained monthly rainfall records for each catchment, stretching from October 1925 to September 2006.

The process of converting the rainfall records for purposes of this model is shown in **Figure 8-3.**

The first task in this process was to convert the monthly rainfall values to effective rainfall (effective for irrigation).

The formula used by SAPWAT was implemented in this part. The relevant reference literature is found in the minutes of meetings of the steering committee responsible for the development of SAPWAT. We accept the accuracy and theoretical basis of the formula. This formula does take cognisance of the available water retaining capacity of the soil in that it evaluates the monthly evapotranspiration. In SAPWAT the maximum monthly evapotranspiration considered is limited to 75 mm. This formula is:

$$r_e = ET \left(-0.001 \frac{r^2}{ET} + 0.025 \frac{r^2}{ET^2} + 0.0016r + 0.6 \frac{r}{ET}\right)$$
 where ET is limited to 75 mm

In this formula:

 r_e = the effective monthly rainfall r = the actual monthly rainfall ET = the monthly crop evapotranspiration

A time series of effective rainfall was subsequently compiled by using this equation, and using the actual rainfall for every month of the record plus the weighted monthly crop evapotranspiration.

The drought reduction factors were then calculated as the **second task**. The algorithm for this process was based on the actual and mean monthly and the actual and mean annual rainfall in the respective quaternary catchments. For every month of the time series, the rainfall for that particular month was divided by the mean rainfall for that particular month over the whole time series. Should this result be greater than 1, it was limited to 1 and memorised. A result smaller than 1 was also put into memory. While evaluating that particular month, the actual rainfall for the hydrological year in which that specific month falls, was divided by the mean annual rainfall for all hydrological years of the time series. Once again, this result was limited to a maximum of 1. These results were then compared with the monthly results held in memory. The model then defines the drought reduction factor for that particular month as the larger of these two values.

The reasoning behind this algorithm is that a single dry month in an otherwise normal or wet year will not limit the planting of irrigation crops. The actual planting date may be postponed by a month or two, or alternative crops may be planted should the year turn out to be normal or wet. During a particularly dry year, a smaller area of planted crops, or even no planting at all, may reasonably be expected.

The drought reduction factors were used deeper down in the model to reduce the theoretical irrigation requirements to actual (drought restricted) irrigation requirements. In the model these calculations are included in a sheet named **Rain**.

This approach obviously does not take into account the irrigation of permanent crops such as orchards. Care should be taken not to use a drought reduction factor that mimics actual irrigation use at levels lower than those required for the permanent crops. Such problems were encountered in the study area. The final results presented therefore do not include the drought restricted time series, as most of the crops irrigated in the study area are of a permanent nature.

The third task was to develop time series based on a fixed area of irrigation.

The gross monthly irrigation requirements (mm) for the representative crop, excluding rainfall, are used as the point of departure. For every month of the time series, the effective rainfall is the subtracted from the gross irrigation requirement for that month. These results were limited to a minimum of 0 and are included under a heading of Net irrigation requirements (mm) in a sheet named Flow_Fix_m³.

The total annual irrigation requirements obtained from this time series were then analysed statistically to obtain the annual irrigation depth that will satisfy the requirements at different levels of assurance. The depths were converted into a volume per field area by multiplying the crop area with the quota factor described earlier. These results are shown to the right of the table containing the net irrigation requirements.

The time series for the depth of irrigation requirements was then converted to a time series of the volume of irrigation requirements. This is shown under the heading Net irrigation requirements (m³).

The next time series in the model, under the heading Drought reduction factor included is the result when the net irrigation requirements (m³) are multiplied with the drought reduction factor calculated earlier.

In the last part of the sheet Flow_Fix_m³ the return flows are quantified. The weighted average return flow percentage is multiplied by the corresponding monthly irrigation requirements. In the model, the return flows during drought restricted months is reduced by multiplying the results with a factor of 0,75. This is done in order to appreciate higher losses during severe droughts and also to cater for drier soil profiles, holding back more water than during wetter periods.

The results of the calculations done on the sheet Flow_Fix_m3 are carried over to a sheet called Flow_Fix_Record, and are portrayed in a format that is user friendly for further modelling purposes. The values are expressed in million cubic metres under the headings Net irrigation requirements (10⁶m³), Drought reduction factor included and Return flows respectively.

The fourth task was to develop the growth model that mimics the growth in irrigation from the base date of October 1925 to the last date used in the model, namely September 2006. Benchmark data were available for 1998 and 2004 (survey data).

The growth model is based on the following assumptions:

Range	Assumption
1925 – 1970	Exponential growth to weighted% of 1998 figure
1971 – 1998	Linear growth to 1998 figure
1999 – 2004	Linear growth to 2004 figure

For the period 1925 to 1970, an exponential relationship was developed to show low initial growth, followed by increased growth in the last ten years before the first formal government water control was instituted.

The formula developed is:

$y = b \times m^{yearnumbe}$	$_{r} \times Area_{Control}$
$y = b \land m$	^ Area _{Survey}

Where b = 3.383 and m = 1.08 (year number is 1 in 1925 and 46 in 1970)

The compilation of the growth model is included in a sheet called **Grow_Model** in the model.

The **fifth task** was to develop time series of irrigation requirements based on the growth in irrigation areas over the whole period of the available record. This task follows the same procedures described earlier for a fixed area of irrigation, except that the calculations are based upon a growing area of irrigation.

The **sixth task** was to reverse engineer the calculations done earlier to obtain representative monthly crop factors for the representative crop.

In this task the calculated crop evapotranspiration Et_c as calculated by multiplying the monthly irrigation requirement by the system efficiency, was compared with the Penman-Monteith evaporation. The following relationship was used:

 $Et_c = K_c * Et_0$, where Et_c is the crop evapotranspiration, Et_0 is the Penman-Monteith evaporation and K_c is the representative crop factor.

The K_c-values are shown in sheet **ETo** in the model.

Graphical results showing the time series for the fixed area model is included in sheet **Fix_Model_Graph** and that for the growing area model is included in sheet **Grow_Model_Graph** of the model.

8.14 MODEL INTERFACE

A user friendly model interface was developed for each quaternary and each quinary catchment. This interface allows the user to evaluate all aspects described in this part of the report and facilitates the development of different time series, as required by the user.

The model interface is contained in a sheet called **Variables**. The input structure was designed so that the user can input areas for both the growth model and the fixed area model. The left hand part of the input table contains the data used in the scenario that the user wants to analyse, while the right hand part contains the data found under our assignment.

8.15 RESULTS

The results of this part of the study are summarised in the sections that follow.

8.15.1 Rainfall

A summary of the mean (average) annual rainfall in mm per quaternary catchment is shown in **Table 8-1** and the calculated mean annual effective rainfall (that amount of rainfall that enters into the soil profile and is available for use by the crop) is presented in **Table 8-2**.

AVERAGE RAINFALL (mm)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Tot
B81A01	69	125	176	201	199	158	67	26	16	17	16	30	1100
Average	69	125	176	201	199	158	67	26	16	17	16	30	1100
B81B01	75	146	195	221	213	171	70	28	16	16	17	34	1200
B81B10	66	119	168	192	190	151	64	25	15	16	16	29	1050
B81B12	62	113	160	183	181	144	61	24	14	15	15	27	1000
B81B14	62	113	160	183	181	144	61	24	14	15	15	27	1000
B81B16	81	147	208	238	235	187	79	31	18	20	19	36	1300
B81B20	94	183	244	276	266	213	88	34	20	20	21	42	1500
B81B30	75	146	195	221	213	171	70	28	16	16	17	34	1200
Average	74	138	190	216	211	169	70	28	16	17	17	33	1179
B81C01	48	91	123	162	158	113	43	17	11	10	8	18	803
B81C10	57	108	146	193	188	135	51	20	13	12	9	22	954
B81C15	54	102	138	183	178	128	48	19	12	12	9	21	903
Average	53	100	136	179	175	125	47	19	12	11	9	20	887
	-			-	-	-		-			-	-	-
B81D01	45	74	105	132	124	88	34	12	7	9	5	16	650
B81D10	77	155	211	252	233	183	79	30	16	17	16	33	1300
B81D13	71	143	194	233	215	169	73	27	14	15	15	31	1200
B81D16	59	119	162	194	179	141	60	23	12	13	13	26	1000
B81D28	45	74	105	132	124	88	34	12	7	9	5	16	650
Average	59	113	155	188	175	134	56	21	11	12	11	24	960
B81E01	45	74	105	132	124	88	34	12	7	9	5	16	650
B81E10	38	63	89	111	105	75	29	10	6	7	4	13	550
B81E20	54	102	138	183	178	128	48	19	12	12	. 9	21	903
B81F23	45	74	105	132	124	88		12	7	9	5	16	650
B81E25	41	69	97	122	114	82	31	11	7	8	4	15	600
B81E30	54	102	138	183	178	128	48	19	. 12	12	9	21	903
Average	46	81	112	144	137	98	37	14	9	9	6	17	709
, troitago	40	•••					01		•	Ŭ			
B81F01	31	51	72	91	86	61	23	q	5	6	3	11	450
B81F10	۵۱ 41	60	97	122	114	82	31	11	7	8	4	15	600
B81F20	38	63	80	111	105	75	29	10	, 6	7		13	550
B81F30	38	63	89	111	105	75	29	10	6	7	- 4	13	550
Average	37	61	86	109	102	73	28	10	6	7	4	13	538
		•••							v	-			
B81G01	38	63	89	111	105	75	29	10	6	7	4	13	550
B81G10	52	86	121	152	143	102	39	14	8	10	6	18	750
Average	45	74	105	132	124	88	34	12	7	9	5	16	650
Average	40		.00	1.52	.24	00	57	12		3		10	550
B81H01	34	57	80	101	95	68	26	10	6	7	4	12	500
B81H10	38	63	80	111	105	75	20	10	6	7		12	550
Average	36	03	81	106	100	73	23 27	10	8	7	4	13	525
Average	30	00	04	100	100	/1	21	10	U	, '		13	323
R81 I01	21	51	72	01	88	61	23	۵	5	6	2	11	450
B01001	31	51	72	01	88	61	23	<u>م</u>	5	6	2	11	450
20131U	31 34	51 E4	72	91	00	61	20	9 0	5 E	6	ن م	44	450
Average	31	51	12	91	00	10	23	Э	5	Ö	3	- 11	430

AVERAGE EFFECTIVE RAINFALL (mm)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Tot
B81A01	44	76	101	107	107	90	42	17	10	11	11	19	635
Average	44	76	101	107	107	90	42	17	10	11	11	19	635
B81B01	49	87	108	113	110	94	44	18	10	10	11	23	680
B81B10	43	74	97	104	103	87	41	17	10	11	11	20	619
B81B12	41	71	94	101	100	84	39	16	9	10	10	19	595
B81B14	41	71	94	101	100	84	39	16	9	10	10	19	595
B81B16	52	88	114	119	118	102	49	20	12	13	13	24	725
B81B20	59	103	125	127	124	109	54	22	13	13	14	28	793
B81B30	49	87	108	113	110	94	44	18	10	10	11	23	679
Average	48	83	106	111	110	94	44	18	11	11	12	22	669
-													
B81C01	32	58	75	89	85	67	28	12	7	7	6	13	477
B81C10	37	67	86	99	94	76	34	14	9	8	7	15	545
B81C15	36	64	83	96	91	73	31	13	8	8	6	14	523
Average	35	63	81	95	90	72	31	13	8	8	6	14	515
			-				-	-	-	-	-		-
B81D01	30	48	65	77	70	54	22	8	5	6	3	10	398
B81D10	50	91	114	121	116	99	49	19	10	11	11	22	714
B81D13	46	85	108	116	111	94	46	18	10	10	10	21	675
B81D16		73	94	104	98	82	39	15			9	- 18	587
B81D28	29	47	65	77	70	54	22		5	6	3	14	399
Average	30	69	89	99	93	77	36	14	8	8	7	17	555
Average	55	00	00					14	Ŭ	•			000
B81E01	30	/8	65	77	70	54	22	9	5	6	3	11	300
B81E10	26	40	57	67	62	/7	10	7	1	5	3	9	347
B01E10	20	64	93	06	02	72	32	12	-	9	5	14	522
B01E20	20	40	65	30	70	73 EA	22	13	5	0	0	14	200
B01L23	28	40	61	72	66	51	23	0	1	5	3	10	333
B01L2J	20	43	01	06	00	72	21	12	4	0	5	14	573
Boleso	30	04 50	00	90	91 75	73 50	32	13	0	0	0	14	323
Average	31	52	09	01	75	29	25	10	0	0	4	- 11	421
B04E04	04	0.4	47	F7	50	40	46	6	· ·	4	0		200
B01FU1	21	34	4/	57	52	40	01	b	3 	4	2	1	290
B01F10	28	45	01	12	00	51	20	ŏ -	5	5	3	10	3/3
B01F20	26	41	5/	67	62	47	19	/	4	5	3	9	340
D01F3U	20	41	5/ EE	10	02	4/	19	/	4	э Е	ა ი	9	347
Average	25	40	22	00	60	40	18	1	4	э	3	Э	339
Batoot	00	44	E-7	67	60	40	40		4			40	240
BolGUI	26	41	5/	07	62 77	48	18	1	4	5	3	12	349
B81G10	34	54	73	85	//	60	26	10	6	(4	12	448
Average	30	48	65	76	69	54	22	8	5	6	3	12	399
Batta				~~~		10							0/10
B81H01	22	36	52	62	57	42	1/	/	4	4	3	10	316
B81H10	24	41	57	67	61	47	18	7	4	5	3	0	334
Average	23	39	54	65	59	44	18	7	4	5	3	5	325
B81J01	20	34	47	57	52	38	15	6	3	4	2	7	287
B81J10	20	34	47	57	52	38	15	6	3	4	2	7	286
Average	20	34	47	57	52	38	15	6	3	4	2	7	287

8.15.2 Average annual irrigation requirements

Table 8-3 shows the average annual irrigation requirements in addition to rainfall in m³ per crop ha:

	AVERAGE NETT IRRIGATION REQUIREMENTS (Rain included) in m ³ crop ha												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Tot
B81A01	232	111	83	60	39	54	185	398	403	350	433	237	2585
Average	232	111	83	60	39	54	185	398	403	350	433	237	2585
B81B01	581	436	424	356	216	200	314	494	502	499	627	667	5316
B81B10	664	603	563	450	263	247	377	562	559	540	685	731	6243
B81B12	621	509	459	359	207	215	355	516	511	492	627	674	5546
B81B14	657	603	562	445	256	238	361	536	536	525	670	714	6103
B81B16	618	461	374	291	171	150	243	414	439	443	577	671	4850
B81B20	461	310	311	259	160	135	227	414	433	431	540	569	4252
B81B30	622	455	426	361	211	179	266	434	449	445	553	638	5040
Average	603	482	446	360	212	195	306	482	490	482	611	666	5336
B81C01	760	544	478	362	292	423	317	658	611	626	809	882	6764
B81C10	778	701	737	551	380	377	482	608	559	571	724	812	7278
B81C15	731	541	508	368	288	375	393	616	552	555	715	825	6465
Average	756	595	574	427	320	392	397	627	574	584	749	840	6836
B81D01	501	486	547	427	312	322	387	624	563	525	634	514	5842
B81D10	672	474	514	394	260	241	343	493	477	483	615	743	5708
B81D13	740	469	460	335	232	255	381	501	463	455	600	822	5714
B81D16	838	629	642	503	336	246	338	470	445	443	579	770	6239
B81D28	159	221	349	262	126	84	281	547	501	408	411	14	3363
Average	582	456	502	384	253	230	346	527	490	463	568	573	5373
B81E01	765	674	594	501	417	485	390	711	650	641	814	843	7484
B81E10	896	810	734	616	513	595	477	724	660	666	849	951	8492
B81E20	955	829	789	604	388	360	447	553	506	515	630	904	7480
B81E23	869	870	876	703	490	471	569	653	562	525	668	842	8097
B81E25	760	718	690	558	413	440	486	685	602	564	697	751	7365
B81E30	736	600	590	439	291	271	431	573	499	470	584	704	6190
Average	830	750	712	570	419	437	467	650	580	564	707	832	7518
B81F01	771	818	924	784	510	477	491	689	607	568	664	645	7948
B81F10	683	649	657	549	414	444	424	729	659	628	746	681	7261
B81F20	733	714	742	616	449	467	467	725	646	611	722	694	7587
B81F30	830	780	776	647	501	551	479	742	664	645	785	823	8223
Average	754	741	775	649	468	485	465	721	644	613	729	711	7755
B81G01	591	813	1141	1145	861	52	95	221	212	171	165	9	5477

	AVER	AGE N	ETT IRF	RIGATIC	ON REC	UIREN	IENTS	(Rain i	nclude	d) in n	n³ /crop	ha	
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Tot
B81G10	479	505	583	480	301	267	528	757	683	611	665	416	6276
Average	535	659	862	813	581	160	311	489	448	391	415	212	5876
B81H01	132	208	321	261	123	179	521	850	756	613	556	17	4536
B81H10	267	424	678	594	314	86	284	541	491	390	355	0	4424
Average	200	316	500	428	218	132	402	696	624	501	455	8	4480
B81J01	372	482	669	546	293	244	418	704	634	543	552	202	5658
B81J10	328	460	672	541	266	195	432	688	615	511	499	131	5339
Average	350	471	670	543	279	220	425	696	625	527	525	166	5498

8.15.3 Required abstraction rates

Table 8-4 shows the abstraction rates in litres per second per hectare required to satisfy the peak irrigation requirements.

	MONTHLY GROSS FLOW RATE REQUIREMENTS (I/s/ha)													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Max	
B81A01	0.68	0.71	0.73	0.67	0.62	0.51	0.45	0.41	0.38	0.36	0.50	0.60	0.73	
Max	0.68	0.71	0.73	0.67	0.62	0.51	0.45	0.41	0.38	0.36	0.50	0.60	0.73	
B81B01	0.71	0.69	0.78	0.72	0.64	0.59	0.62	0.51	0.47	0.44	0.54	0.67	0.78	
B81B10	0.64	0.69	0.74	0.69	0.64	0.59	0.51	0.46	0.43	0.40	0.49	0.61	0.74	
B81B12	0.64	0.69	0.78	0.72	0.64	0.59	0.51	0.51	0.46	0.40	0.49	0.61	0.78	
B81B14	0.64	0.69	0.74	0.69	0.64	0.59	0.51	0.51	0.46	0.40	0.49	0.61	0.74	
B81B16	0.61	0.69	0.74	0.69	0.64	0.48	0.39	0.34	0.33	0.36	0.47	0.57	0.74	
B81B20	0.64	0.66	0.74	0.69	0.61	0.53	0.45	0.38	0.32	0.31	0.40	0.57	0.74	
B81B30	0.64	0.69	0.90	0.85	0.64	0.59	0.51	0.46	0.43	0.44	0.49	0.61	0.90	
Max	0.71	0.69	0.90	0.85	0.64	0.59	0.62	0.51	0.47	0.44	0.54	0.67	0.90	
B81C01	0.73	0.77	0.79	0.75	0.72	0.67	0.58	0.52	0.49	0.48	0.58	0.69	0.79	
B81C10	0.84	0.90	1.04	1.00	0.86	0.80	0.72	0.59	0.52	0.54	0.55	0.78	1.04	
B81C15	0.69	0.75	0.90	0.85	0.72	0.62	0.72	0.59	0.52	0.42	0.54	0.65	0.90	
Max	0.84	0.90	1.04	1.00	0.86	0.80	0.72	0.59	0.52	0.54	0.58	0.78	1.04	
B81D01	0.63	0.67	0.90	0.83	0.70	0.60	0.45	0.56	0.50	0.41	0.38	0.56	0.90	
B81D10	0.69	0.73	0.84	0.80	0.70	0.60	0.46	0.43	0.40	0.41	0.53	0.64	0.84	
B81D13	0.69	0.76	0.90	0.83	0.73	0.66	0.45	0.56	0.50	0.41	0.53	0.64	0.90	
B81D16	0.69	0.76	0.90	0.94	0.89	0.66	0.45	0.56	0.50	0.41	0.53	0.64	0.94	
B81D28	0.63	0.67	0.90	0.83	0.56	0.48	0.45	0.56	0.50	0.41	0.38	0.56	0.90	
Max	0.69	0.76	0.90	0.94	0.89	0.66	0.46	0.56	0.50	0.41	0.53	0.64	0.94	
B81E01	0.71	0.78	1.07	1.05	0.75	0.68	0.59	0.62	0.55	0.47	0.56	0.66	1.07	
B81E10	0.71	0.78	1.07	1.05	0.97	0.89	0.59	0.62	0.55	0.60	0.71	0.79	1.07	

Table 8-4

Technical Study Module : Review of Water Requirements : Volume 2

	MONTHLY GROSS FLOW RATE REQUIREMENTS (I/s/ha)												
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Max
B81E20	0.71	0.80	1.07	1.05	0.97	0.72	0.55	0.62	0.55	0.57	0.56	0.66	1.07
B81E23	0.71	0.77	1.07	1.05	0.76	0.65	0.51	0.62	0.55	0.44	0.56	0.66	1.07
B81E25	0.71	0.80	0.93	0.89	0.79	0.72	0.76	0.62	0.55	0.44	0.56	0.66	0.93
B81E30	0.65	0.71	0.93	1.00	0.97	0.69	0.51	0.62	0.55	0.44	0.52	0.61	1.00
Max	0.71	0.80	1.07	1.05	0.97	0.89	0.76	0.62	0.55	0.60	0.71	0.79	1.07
B81F01	0.70	0.84	1.14	1.12	1.04	0.76	0.52	0.64	0.57	0.46	0.41	0.59	1.14
B81F10	0.67	0.74	0.99	0.95	0.65	0.55	0.52	0.64	0.57	0.46	0.41	0.59	0.99
B81F20	0.67	0.74	0.99	1.07	1.04	0.55	0.52	0.64	0.57	0.46	0.41	0.59	1.07
B81F30	0.74	0.84	1.14	1.12	0.84	0.76	0.54	0.64	0.57	0.46	0.58	0.68	1.14
Max	0.74	0.84	1.14	1.12	1.04	0.76	0.54	0.64	0.57	0.46	0.58	0.68	1.14
B81G01	0.67	0.74	0.99	1.07	1.04	0.66	0.52	0.64	0.57	0.46	0.40	0.59	1.07
B81G10	0.74	0.81	0.99	0.95	0.81	0.73	0.63	0.64	0.57	0.49	0.58	0.68	0.99
Max	0.74	0.81	0.99	1.07	1.04	0.73	0.63	0.64	0.57	0.49	0.58	0.68	1.07
B81H01	0.68	0.75	1.01	0.97	0.66	0.55	0.52	0.65	0.58	0.46	0.41	0.59	1.01
B81H10	0.52	0.75	1.01	1.09	1.06	0.36	0.52	0.65	0.58	0.46	0.40	0.00	1.09
Max	0.68	0.75	1.01	1.09	1.06	0.55	0.52	0.65	0.58	0.46	0.41	0.59	1.09
B81J01	0.53	0.66	1.01	0.96	0.60	0.54	0.52	0.65	0.58	0.46	0.41	0.49	1.01
B81J10	0.68	0.75	1.01	0.96	0.66	0.56	0.52	0.65	0.58	0.46	0.41	0.60	1.01
Max	0.68	0.75	1.01	0.96	0.66	0.56	0.52	0.65	0.58	0.46	0.41	0.60	1.01

8.15.4 Proposed irrigation quota

The proposed irrigation quotas based on cubic metres per field hectare per annum are presented in **Table 8-5**.:

PROP	PROPOSED IRRIGATION QUOTA PER FIELD AREA									
	Annual m³/ha									
B81A01	4102									
Median	4102									
B81B01	5944									
B81B10	6876									
B81B12	6575									
B81B14	6776									
B81B16	5435									
B81B20	4819									
B81B30	5665									
Median	5944									

PROPOSED IRRIGATION QUOTA										
PER FIELD AREA										
	Annual m³/ha									
B81C01	7427									
B81C10	8365									
B81C15	7430									
Median	7430									
B81D01	7760									
B81D10	6341									
B81D13	6483									
B81D16	6982									
B81D28	7221									
Median	6982									
B81E01	8480									
B81E10	9316									
B81E20	8472									
B81E23	9589									
B81E25	9139									
B81E30	7792									
Median	8810									
B81F01	10102									
B81F10	9157									
B81F20	9587									
B81F30	9696									
Median	9642									
B81G01	7512									
B81G10	9819									
Median	8666									
B81H01	12311									
B81H10	8423									
Median	10367									
B81J01	9758									
B81J10	9956									
Median	9857									

8.15.5 Crop factors

The crop factors to be used with the Penman-Monteith evaporation are shown in **Table 8-6:**

Table 8-6

PENMAN-MONTEITH CROP FACTORS														
		Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annual
B81A01	Eto	103.16	103.51	109.88	100.05	87.36	88.06	74.28	68.41	61.84	59.39	76.09	91.61	1023.64
	1998 Kc	0.57	0.66	0.73	0.72	0.63	0.61	0.66	0.74	0.72	0.67	0.62	0.40	0.64
B81B01	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.83	0.98	1.07	1.06	0.98	0.82	0.72	0.71	0.71	0.71	0.72	0.74	0.86
B81B10	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.85	1.01	1.10	1.10	1.02	0.85	0.76	0.76	0.76	0.76	0.76	0.77	0.89
B81B12	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.80	0.91	0.99	0.98	0.90	0.78	0.72	0.71	0.70	0.70	0.70	0.71	0.82
B81B14	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.82	0.99	1.07	1.06	0.98	0.81	0.73	0.73	0.73	0.74	0.74	0.74	0.87
B81B16	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.89	1.00	1.06	1.05	0.97	0.79	0.68	0.64	0.66	0.68	0.69	0.76	0.85
B81B20	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.81	0.98	1.08	1.08	0.99	0.81	0.69	0.67	0.66	0.66	0.66	0.70	0.84
B81B30	Eto	117.67	122.48	130.18	122.66	106.35	109.15	90.95	84.44	75.24	73.88	90.19	106.96	1230.15
	1998 Kc	0.86	1.00	1.07	1.07	0.97	0.79	0.66	0.64	0.65	0.65	0.65	0.72	0.84
B81C01	Eto	133.78	139.45	150.40	145.20	125.17	127.96	106.11	97.87	86.36	87.53	104.56	121.53	1425.92
	1998 Kc	0.72	0.73	0.74	0.74	0.74	0.74	0.49	0.69	0.69	0.69	0.71	0.72	0.71
B81C10	Eto	133.78	139.45	150.40	145.20	125.17	127.96	106.11	97.87	86.36	87.53	104.56	121.53	1425.92
	1998 Kc	0.77	0.90	0.98	0.96	0.89	0.76	0.69	0.67	0.65	0.65	0.65	0.69	0.79
B81C15	Eto	133.78	139.45	150.40	145.20	125.17	127.96	106.11	97.87	86.36	87.53	104.56	121.53	1425.92
	1998 Kc	0.73	0.77	0.81	0.80	0.77	0.74	0.59	0.67	0.64	0.63	0.64	0.69	0.72
B81D01	Eto	133.23	136.88	149.53	142.27	122.44	123.74	102.02	93.32	82.61	83.63	101.64	119.66	1390.96
	1998 Kc	0.54	0.63	0.73	0.72	0.65	0.59	0.53	0.66	0.64	0.60	0.56	0.44	0.61
B81D10	Eto	133.23	136.88	149.53	142.27	122.44	123.74	102.02	93.32	82.61	83.63	101.64	119.66	1390.96
	1998 Kc	0.79	0.93	1.02	1.01	0.95	0.82	0.71	0.65	0.62	0.61	0.62	0.71	0.81
B81D13	Eto	133.23	136.88	149.53	142.27	122.44	123.74	102.02	93.32	82.61	83.63	101.64	119.66	1390.96
	1998 Kc	0.82	0.88	0.94	0.92	0.87	0.81	0.72	0.64	0.59	0.58	0.60	0.76	0.78
B81D16	Eto	133.23	136.88	149.53	142.27	122.44	123.74	102.02	93.32	82.61	83.63	101.64	119.66	1390.96
	1998 Kc	0.83	0.91	0.98	0.97	0.92	0.72	0.62	0.58	0.55	0.55	0.57	0.69	0.77
B81D28	Eto	133.23	136.88	149.53	142.27	122.44	123.74	102.02	93.32	82.61	83.63	101.64	119.66	1390.96
	1998 Kc	0.27	0.43	0.59	0.58	0.39	0.27	0.42	0.59	0.57	0.48	0.37	0.03	0.41
B81E01	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.70	0.72	0.74	0.73	0.70	0.67	0.48	0.67	0.67	0.66	0.67	0.66	0.68
B81E10	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.75	0.76	0.77	0.76	0.74	0.71	0.53	0.67	0.67	0.67	0.69	0.73	0.71
B81E20	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.86	0.92	0.96	0.94	0.83	0.70	0.61	0.58	0.57	0.56	0.55	0.74	0.76
B81E23	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.76	0.84	0.90	0.87	0.77	0.66	0.63	0.62	0.58	0.55	0.56	0.66	0.72
B81E25	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.68	0.72	0.77	0.75	0.67	0.62	0.55	0.64	0.62	0.58	0.58	0.59	0.66
B81E30	Eto	136.38	144.76	154.48	152.19	132.58	133.59	112.00	102.94	90.36	91.74	108.19	123.42	1482.64
	1998 Kc	0.72	0.78	0.84	0.82	0.73	0.62	0.59	0.60	0.56	0.52	0.51	0.60	0.67
B81F01	Eto	142.43	151.42	164.78	162.85	142.25	141.72	118.81	107.22	94,31	96.21	111.24	126.98	1560.23
	1998 Kc	0.61	0.69	0.76	0.75	0.63	0.54	0.48	0.60	0.58	0.54	0.53	0.49	0.61
B81F10	Eto	142 43	151 42	164 78	162.85	142 25	141 72	118 81	107 22	94 31	96.21	111 24	126 98	1560.23
	1998 Kc	0.60	0.65	0.70	0.69	0.63	0.59	0.47	0.65	0.64	0.61	0.60	0.53	0.62
	1000 10	0.00	0.00	0.70	0.03	0.00	0.00	0.77	0.00	0.04	0.01	0.00	0.00	0.02

Technical Study Module : Review of Water Requirements : Volume 2

		Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Annual
B81F20	Eto	142.43	151.42	164.78	162.85	142.25	141.72	118.81	107.22	94.31	96.21	111.24	126.98	1560.23
	1998 Kc	0.62	0.67	0.72	0.71	0.64	0.58	0.49	0.64	0.63	0.59	0.58	0.53	0.62
B81F30	Eto	142.43	151.42	164.78	162.85	142.25	141.72	118.81	107.22	94.31	96.21	111.24	126.98	1560.23
	1998 Kc	0.68	0.71	0.74	0.73	0.68	0.64	0.50	0.66	0.64	0.62	0.63	0.62	0.66
B81G01	Eto	136.95	147.23	157.32	156.67	136.40	136.04	112.89	103.02	91.31	90.08	106.49	123.98	1498.39
	1998 Kc	0.55	0.75	0.98	1.05	0.97	0.17	0.18	0.25	0.24	0.20	0.15	0.02	0.51
B81G10	Eto	136.95	147.23	157.32	156.67	136.40	136.04	112.89	103.02	91.31	90.08	106.49	123.98	1498.39
	1998 Kc	0.54	0.64	0.77	0.74	0.61	0.52	0.62	0.72	0.70	0.65	0.57	0.37	0.62
B81H01	Eto	144.26	153.88	168.35	165.19	144.39	143.77	118.97	107.67	94.97	95.64	111.14	128.46	1576.70
	1998 Kc	0.20	0.32	0.45	0.44	0.29	0.32	0.52	0.73	0.72	0.59	0.45	0.03	0.40
B81H10	Eto	144.26	153.88	168.35	165.19	144.39	143.77	118.97	107.67	94.97	95.64	111.14	128.46	1576.70
	1998 Kc	0.32	0.49	0.67	0.68	0.51	0.22	0.35	0.49	0.48	0.40	0.29	0.00	0.42
B81J01	Eto	143.43	152.73	167.82	163.44	143.20	145.27	120.21	107.83	95.85	96.04	112.13	129.54	1577.50
	1998 Kc													
B81J10	Eto	143.43	152.73	167.82	163.44	143.20	145.27	120.21	107.83	95.85	96.04	112.13	129.54	1577.50
	1998 Kc	0.33	0.47	0.62	0.60	0.43	0.32	0.43	0.60	0.58	0.49	0.40	0.12	0.45

PENMAN-MONTEITH CROP FACTORS

9. CONCLUSIONS

9.1 IRRIGATION AREAS AND WATER SOURCES

The total irrigated crop area in the study area amounted to some 29 363 ha during 2004. From the results obtained from the study it is evident that 84,7% of the areas under irrigation are from surface water resources and most of this falls within Irrigation Board Districts. A total crop area of some 24 866 ha was identified as being irrigated with surface water. Irrigation with groundwater totalled 4 417 ha or 15% of the total irrigated area while irrigation from other water resources amounted to some 79 ha or 0,3% of the total irrigation.

9.2 IRRIGATION VOLUMES

The calculated average annual irrigation volume from surface water resources amounts to some 171 670 300 m³ (83,7% of the total), while from boreholes the volume is some 32 922 000 m³ (16,1% of the total). Irrigation from other sources such as recycled water and municipal sources amounts to some 470 880 m³ (0,2% of the total).

The total annual water requirement for irrigation in the area amounts to an average of some 205 063 000 m³ for the irrigation of some 29 363 ha of crops. This gives an average quota of some 6 984 m³/ha/annum.

an Preno 16 October 2007

Annexure A of Appendix C

Fixed Area Irrigation Demand Time Series
FIXED AREA I	RRIGATION	DEMAND T	IME SERIES	В	81A01		1						
Year	Oct	Nov	Dec	lan	Monthly in Feb	rigation der Mar	Anr Anr	мау Мау	lun	Jul	Aug	Sep	Total
1925	0.204	0.072	0.077	0.000	0.000	0.000	0.225	0.231	0.225	0.000	0.223	0.087	1.345
1926	0.292	0.062	0.032	0.000	0.000	0.000	0.063	0.186	0.192	0.101	0.216	0.135	1.280
1927	0.000	0.083	0.101	0.000	0.000	0.000	0.000	0.113	0.232	0.143	0.149	0.165	0.987
1928	0.200	0.058	0.000	0.000	0.000	0.000	0.067	0.234	0.064	0.164	0.139	0.118	1.044
1929	0.299	0.000	0.000	0.000	0.000	0.000	0.002	0.227	0.191	0.000	0.228	0.098	1.147
1931	0.189	0.000	0.126	0.000	0.000	0.000	0.109	0.115	0.210	0.208	0.238	0.140	1.335
1932	0.142	0.202	0.000	0.000	0.000	0.048	0.086	0.242	0.231	0.196	0.216	0.170	1.534
1933	0.196	0.000	0.000	0.000	0.000	0.000	0.153	0.234	0.142	0.178	0.215	0.135	1.254
1934	0.150	0.000	0.000	0.000	0.000	0.013	0.188	0.133	0.226	0.181	0.245	0.130	1.267
1935	0.170	0.289	0.091	0.000	0.000	0.000	0.039	0.064	0.162	0.098	0.207	0.030	1.149
1937	0.185	0.244	0.000	0.000	0.067	0.096	0.000	0.214	0.094	0.180	0.212	0.000	1.292
1938	0.000	0.007	0.000	0.000	0.000	0.000	0.115	0.103	0.108	0.000	0.185	0.024	0.543
1939	0.158	0.000	0.000	0.072	0.000	0.000	0.000	0.190	0.058	0.201	0.145	0.000	0.824
1940	0.200	0.000	0.000	0,000	0.000	0.121	0.000	0.251	0.223	0.196	0.178	0.165	1.335
1941	0.096	0.129	0.030	0.000	0.158	0.000	0.112	0.062	0.143	0.129	0.086	0.000	0.946
1942	0.215	0.000	0.062	0.000	0.000	0.000	0.180	0.259	0.024	0.208	0.226	0.143	1.317
1944	0.000	0.076	0.156	0.000	0.000	0.000	0.139	0.263	0.232	0.182	0.231	0.185	1.464
1945	0.000	0.087	0.000	0.000	0.000	0.000	0.100	0.209	0.192	0.204	0.235	0.191	1.219
1946	0.182	0.123	0.173	0.128	0.000	0.000	0.000	0.214	0.161	0.178	0.248	0.092	1.499
1947	0.111	0.000	0.000	0.000	0,000	0.000	0.133	0.177	0.232	0.180	0.219	0.145	1.197
1948	0.000	0.019	0.225	0.000	0.000	0.000	0.115	0.095	0.150	0.121	0.122	0.154	0.952
1950	0.272	0.000	0.000	0.000	0.213	0.000	0.000	0.000	0.232	0.187	0.169	0.015	1.088
1951	0.000	0.187	0.000	0.000	0.000	0.067	0.074	0.201	0.169	0.084	0.163	0.186	1.129
1952	0.134	0.000	0.000	0.000	0.000	0.000	0.000	0.249	0.232	0.111	0.181	0.149	1.056
1953	0.172	0.000	0.000	0.000	0.000	0.000	0.000	0.197	0.202	0.208	0.100	0.126	1.004
1954	0.067	0.000	0.000	0.000	0.000	0.000	0.000	0.145	0.104	0.166	0.247	0.150	0.880
1955	0.129	0.082	0.000	0.000	0.000	0.000	0.000	0.130	0.127	0.014	0.103	0.072	0.657
1957	0.000	0.036	0.071	0.000	0.000	0.004	0.000	0.258	0.209	0.207	0.244	0.000	1.030
1958	0.050	0.073	0.000	0.000	0.000	0.000	0.201	0.261	0.226	0.092	0.235	0.129	1.267
1959	0.063	0.000	0.000	0.158	0.000	0.000	0.000	0.213	0.136	0.200	0.220	0.100	1.090
1960	0.227	0.000	0.000	0.090	0.000	0.000	0.000	0.196	0.139	0.088	0.101	0.092	1.650
1962	0.227	0.000	0.000	0.000	0.163	0.128	0.045	0.136	0.083	0.155	0.201	0.170	1.366
1963	0.156	0.052	0.087	0.090	0.001	0.205	0.115	0.228	0.232	0.208	0.238	0.157	1.769
1964	0.003	0.122	0,000	0.000	0.125	0.169	0.041	0.241	0.212	0.198	0.189	0.067	1.367
1965	0.232	0.000	0.158	0.000	0.000	0.153	0.146	0.229	0.217	0.182	0.229	0.026	1.571
1966	0.050	0.046	0.000	0.000	0.000	0.000	0.000	0.236	0.217	0.136	0.246	0.181	1.113
1968	0.133	0.000	0.000	0.000	0.069	0.000	0.000	0.222	0.197	0.185	0.223	0.104	1.133
1969	0.000	0.183	0.000	0.097	0.000	0.195	0.182	0.167	0.173	0.119	0.241	0.120	1.476
1970	0.104	0.151	0.000	0.000	0.000	0.184	0.000	0.040	0.189	0.208	0.243	0.124	1.244
1971	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.122	0.222	0.185	0.186	0.171	0.885
1972	0.000	0.000	0.197	0.018	0.000	0.000	0.000	0.223	0.196	0.119	0.222	0.000	0.976
1973	0.210	0.000	0.000	0.000	0.000	0.000	0.045	0.159	0.163	0.202	0.203	0.162	1.144
1975	0.180	0.089	0.000	0.000	0.000	0.000	0.000	0.000	0.191	0.207	0.230	0.155	1.053
1976	0.158	0.000	0.098	0.000	0.000	0.000	0.001	0.203	0.231	0.208	0.143	0.000	1.042
1977	0.164	0.027	0.000	0.000	0.000	0.000	0.088	0.227	0.232	0.147	0.235	0.089	1.209
1978	0.177	0.000	0.078	0.000	0.000	0.000	0.106	0.159	0.222	0.150	0.000	0.108	0.999
1980	0.035	0.000	0.000	0.000	0.000	0.000	0.081	0.192	0.232	0.199	0.105	0.075	0.920
1981	0.006	0.000	0.000	0.000	0.085	0.030	0.000	0.049	0.232	0.195	0.230	0.098	0.926
1982	0.085	0.050	0.063	0.080	0.082	0.012	0.182	0.246	0.169	0.198	0.074	0.179	1.419
1983	0.000	0.000	0.072	0.153	0.000	0.000	0.067	0.261	0.215	0.000	0.185	0.108	1.061
1984	0.013	0.000	0.303	0.000	0.000	0.000	0.222	0.033	0.110	0.190	0.238	0.018	1.093
1985	0.000	0.000	0.069	0.118	0.000	0.041	0.175	0.185	0.132	0.208	0.173	0.000	1.102
1987	0.109	0.013	0.000	0.027	0.000	0.000	0.077	0.251	0.000	0.171	0.119	0.004	0.772
1988	0.000	0.148	0.030	0.099	0.000	0.115	0.085	0.228	0.138	0.178	0.203	0.168	1.391
1989	0.073	0.000	0.000	0.000	0.000	0.000	0.026	0.252	0.230	0.178	0.221	0.164	1.143
1990	0.093	0.000	0.000	0.000	0.000	0.000	0.248	0.210	0.085	0.208	0.242	0.123	2 181
1992	0.196	0.135	0.000	0.128	0.000	0.000	0.149	0.257	0.173	0.127	0.169	0,164	1.497
1993	0.104	0.000	0.000	0.048	0.000	0.055	0.156	0.255	0.219	0.201	0.159	0.159	1.357
1994	0.000	0.228	0.000	0.000	0.000	0.000	0.010	0.170	0.227	0.192	0.163	0.161	1.151
1995	0.089	0.000	0.000	0.000	0.000	0.000	0.098	0.000	0.144	0.022	0.100	0.174	0.627
1996	0.110	0.000	0.000	0.000	0.000	0.000	0.150	0.207	0.232	0.159	0.232	0.000	1.090
1008	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.265	0.149	0.000	0.208	0,140	0.548
1999	0.158	0.000	0.000	0.000	0.000	0.000	0.157	0.164	0.134	0.111	0.149	0.096	0.969
2000	0.000	0.027	0.000	0.213	0.000	0.000	0.094	0.165	0.212	0.144	0.238	0.137	1.228
2001	0.000	0.000	0.000	0.000	0.000	0.163	0.155	0.240	0.083	0.188	0.196	0.110	1.135
2002	0.004	0.243	0.053	0.075	0.017	0.072	0.236	0.251	0.070	0.181	0.245	0.029	1.475
2003	0.112	0.171	0.000	0.000	0,133	0.000	0.000	0.192	0.191	0.199	0.202	0.096	1.296
2005	0.180	0.000	0.000	0.000	0.000	0.000	0.157	0.164	0.134	0.111	0.149	0.096	0.991
			1200000	2018177	- and a state	20200204	2010000	5 45850	8 mar	<u>o</u> 1818	2.4828	2000.00	2010 CON
Average	0.102	0.050	0.036	0.026	0.018	0.026	0.078	0.182	0.176	0.152	0.191	0.104	1.141
Average	31	30	31	31	28.25	31	30	31	30	31	31	30	303.25
(m3/s)	0.038	0.019	0.013	0.010	0.007	0.010	0.030	0.068	0.068	0.057	0.071	0.040	0.036

FIXED AREA I	RRIGATION	DEMAND T	IME SERIES	E	381B01		99.782						
			100	3	Monthly i	rrigation der	mand in 10	1^6m^3		120	2		T I
Year 1025	0.204	1.650	1 042	Jan	0.000	0.000	Apr 1.655	May	1 380	0 1/18	1 642	1 377	14 890
1925	2.498	1.516	1.821	0.000	1.384	0.455	0.899	1.138	1.235	1.152	1.547	1.796	15.441
1927	0.372	1.743	1.863	0.000	1.117	0.992	0.723	1.315	1.442	1.154	1.193	1.777	13.691
1928	2.266	1.422	1.583	0.643	0.000	0.000	0.767	1.538	0.796	1.093	1.209	1.438	12.754
1929	1.462	1.431	0.000	1.276	0.211	0.000	0.962	1.500	1.442	1.136	1.638	1.688	12.748
1930	2.617	1.610	0,000	0.212	0.180	0.037	0.182	1.507	1.280	0.092	1.745	1,799	11.261
1931	1.898	0.321	2.341	0.452	0.849	0.168	1.057	0.863	1.352	1.425	1.754	1.831	14.310
1932	1.560	2.410	0.389	0.000	0.754	0.000	0.964	1.500	1.434	1.373	1.511	1 798	11 166
1935	1 799	0.000	0.000	0.647	0.799	1.028	1.432	0.915	1.380	1.310	1.710	1.677	12.696
1935	1.807	2.850	1.969	0.957	0.000	0.000	0.560	0.534	1.024	1.055	1.589	1.417	13.761
1936	1.021	0.000	0.265	0.000	0.000	0.266	1.203	1.573	1.412	1.195	1.601	1.345	9.881
1937	1.907	2.677	0.000	0.000	1.419	1.406	0.000	1.379	0.775	1.306	1.535	0.858	13.262
1938	0.550	1.472	0.000	0.385	0.000	0.000	0.920	0.781	0.846	0.341	1.430	1.046	7.771
1939	1.822	0.000	0.000	1.874	0.433	0.000	0.000	1.354	0.539	1,390	1.237	0.775	9.422
1940	2.066	1.184	0.000	1.825	1.240	1.683	0.249	1.576	1.410	1.360	1.427	2.029	16.049
1941	1.595	2.180	1.984	2 509	1.276	0.000	0.000	1 366	1.221	0.486	0.489	1 279	14.859
1943	2,216	0.747	1.907	0.815	0.000	0.248	1.370	1.596	0.314	1.425	1.592	1.875	14.104
1944	0.285	1.473	2.461	0.828	0,000	0.000	1.131	1.620	1.442	1.308	1.628	2.092	14.267
1945	0.680	1.745	1.427	0.000	0.000	0.211	0.972	1.354	1.243	1.393	1.647	2.106	12.777
1946	1.789	1.849	2.534	2.113	0.000	0.367	0.000	1.254	1.138	1.275	1.754	1.603	15.675
1947	1.511	0.662	0.000	0.358	0.336	0.000	1.003	1.321	1.442	1.219	1.654	1.877	11.383
1948	0.120	1.318	2.348	0.000	0.000	1.038	1.033	0.641	1.016	1.059	1.702	1.501	11.778
1949	2.200	0.667	0.343	0.571	0.000	0.000	0.000	0.856	1.213	1.284	1.282	1.894	10.309
1950	2.441	1.307	0.000	1.407	2.519	0.000	0.252	0.000	1.442	1.555	1.284	1.135	15.121
1951	1 810	0.274	1.56/	0.000	0.802	0.000	0.000	1.421	1.155	1 011	1 413	1 955	9 311
1953	1.973	0.361	0.000	0.000	0.000	0.607	0.160	1.242	1.270	1.425	1.045	1.862	9.946
1954	1.414	0.185	0.231	0.000	0.000	0.000	0.000	0.930	0.904	1.188	1.754	1.815	8.421
1955	0.643	0.000	0.000	1.101	0.000	0.000	1.145	0.638	0.689	1.346	1.533	0.356	7.452
1956	1.811	1.542	1.118	1.560	0.000	0.000	0.000	0.823	0.938	0.156	0.938	1.302	10.187
1957	0.059	1.515	1.990	0.509	0.867	0.702	0,060	1.585	1.371	1.411	1.754	0.000	11.822
1958	1.451	1.403	0.000	0.000	0.000	0.782	1.572	1.557	1.388	0.884	1.720	1.687	12.444
1959	1.381	0.000	0.155	2.252	0.000	0.714	0.050	1.118	0.790	1.398	1.575	1.581	11.014
1960	2.223	0.000	0.000	2.088	0.000	0.000	0.000	1.301	0.753	0.655	1.017	1.561	9.596
1961	2.010	0.001	0.000	1 401	1.495	1.455	0.290	0.914	0.483	0.982	1.623	1.565	13.513
1963	1,661	1.438	1.408	1.708	1.326	2.006	0.911	1.443	1.442	1.425	1.714	1.760	18.242
1964	0.613	1.613	0.000	0.000	1.656	1.726	0.579	1.513	1.335	1.384	1.471	1.328	13.219
1965	2.115	0.988	2.242	0.000	0.000	1.702	1.273	1.583	1.278	1.238	1.576	1.194	15.190
1966	1.013	1.573	0.263	0.362	0.000	0.000	0.000	1.387	1.395	1.028	1.682	2.083	10.786
1967	1.409	0.471	1.971	2.507	0.795	0.000	0.164	0.610	0,631	1.054	1.448	1.990	13.050
1968	1.494	0.298	0.452	0.191	1.600	0.000	0.036	1.482	1.157	1.252	1.627	1.535	11.124
1969	0.000	1.893	0.282	1.872	0.785	1.789	1.339	1.080	1.067	0.873	1.703	1.714	14.398
1970	1.211	0.768	1.201	0.000	0.737	1.768	0.000	0.633	1.123	1.425	1.724	1.680	12.2/1
1971	0.000	0.350	0.6/3	1.277	0.000	0.000	0.548	1 315	1.374	0.872	1.551	1.980	11 673
1973	0.305	0.546	0.000	0.000	0.000	0.000	0.253	1.198	1.399	0.953	1.423	0.528	6.604
1974	1.935	0.328	0.365	0.000	0.000	0.000	0.632	0,996	1.020	1.401	1.516	1.895	10.089
1975	1.789	1.625	0.000	0.000	0.000	0.000	0.334	0.000	1.276	1.421	1.611	1.886	9.942
1976	1.594	0.506	2.265	0.000	0.000	0.000	0.513	1.206	1.442	1.425	1.198	0.310	10.462
1977	1.813	1.539	0.000	0.000	0.000	0.000	0.806	1.403	1.441	1.133	1.627	1.600	11.362
1978	1.905	0.000	1.750	0.327	0.633	0.000	0.970	0.846	1.415	1.193	0.295	1.499	10.832
1979	0.500	0.629	0.209	0.069	0.000	0.395	1.122	1.472	1.442	1.270	1.052	0.627	8.787
1980	1.073	0.000	1 222	1.062	2.019	1.274	0.733	0.244	1,442	1.406	1,662	1.392	12 919
1982	1 284	1 175	1.860	1.002	1 790	0.618	1 348	1 547	1.082	1.389	0.804	2.028	16.498
1983	0.802	1.130	1.691	2.289	1.070	0.000	0.690	1.603	1.348	0,000	1.290	1.502	13.413
1984	0.736	0.000	2.897	0.406	0.000	0.000	1.571	0.259	0.596	1.351	1.699	1.114	10.629
1985	0.725	2.075	1.310	1.431	0.394	0.719	0.000	1.131	1.233	1.410	1.382	1.776	13.588
1986	0.615	0.226	1.208	1.765	0.000	0.727	1.311	1.180	0.876	1.425	1.296	0.000	10.630
1987	1.298	1.164	0.000	1.039	0.000	0.000	0,817	1.545	0.217	1.192	1.155	0.864	9.293
1988	0.000	1.945	1.382	1.798	0.000	1.364	0.632	1.346	0.740	1.317	1.409	1.912	13.845
1989	0.989	0.266	0.596	0.000	0.000	0.000	0.463	1.320	1.366	1.200	1.580	1.984	9.764
1990	1.203	1.111	0.222	0.000	0.000	1.010	1.583	1.326	0.695	1.425	1.709	1.561	21 210
1991	2.556	1.457	0.404	2.376	0 703	0.000	1 1 5 5	1 333	1.220	1 1 3 4	1.539	1.889	15.761
1993	1.623	0.277	0.000	1.905	0.000	1.394	1.322	1.592	1.442	1.389	1.454	1.958	14.356
1994	0.602	2.128	0.923	1.200	0.061	0.000	0.297	0.699	1.432	1.365	1.389	1.970	12.065
1995	1.688	0.000	0.000	0.000	0.000	0.546	0.584	0.000	0.936	0.419	0.593	1.904	6.670
1996	1.296	0.626	1.657	0.000	0.000	0.000	0.770	1.275	1.441	1.107	1.702	0.367	10.240
1997	1.140	0.254	1.847	0.000	1.807	1.773	1.161	1.620	1.399	0.399	1.615	1.035	14.051
1998	0.255	0.665	0.000	0.000	0.000	0.000	0.000	0.606	1.154	0.950	1.580	1.842	7.052
1999	1.778	0.350	0.152	0.000	0.000	0.000	1.226	1.066	0.895	0.878	1.193	1.579	9.117
2000	0.686	1.234	0.346	2.674	0.000	0.378	1.058	0.754	1.328	1.188	1.662	1.781	13.087
2001	1 160	2 504	1 7/2	1 710	1.113	1 202	1.095	1.334	0.030	1 323	1 752	1 469	17 /01
2002	1.572	1.647	2,553	1.492	0.000	0.000	0.000	1.570	1.212	1.123	1,492	1.764	14.424
2004	1.142	1.961	0.341	0.606	2.149	0.657	0.377	1.320	1.214	1.406	1.501	1.579	14.252
2005	2.131	0.768	0.614	0.515	0.000	0.000	1.226	1.066	0.895	0.878	1.193	1.579	10.865
Average	1.305	1.040	0.928	0.827	0.525	0.484	0.691	1.164	1.145	1.132	1.446	1.511	12.220
A	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
(m3/c)	0 497	0.401	0 247	0 200	0.215	0 1 9 1	0.267	0 435	0 442	0 422	0.540	0 582	0 382
100/01	J.40/	0.401	0.04/	0.009	0.210	0.101	0.207	0.435	0.442	0.722	0.040	4.400	0.001

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	B	B1B10								
Vear	Oct	Nov	Dec	lan	Monthly in Feb	rigation dei Mar	nand in 104	Mav	lun	hil	Aug	Sen	Total
1925	0.204	0.078	0.088	0.070	0.000	0.004	0.070	0.064	0.062	0.008	0.070	0.067	0.668
1926	0.106	0.076	0.079	0.003	0.056	0.021	0.036	0.055	0.055	0.040	0.069	0.077	0.674
1927	0.018	0.080	0.093	0.000	0.054	0.034	0.000	0.040	0.063	0.048	0.055	0.084	0.568
1928	0.087	0.075	0.063	0.066	0.000	0.000	0.037	0.065	0.029	0.053	0.053	0.073	0.601
1929	0.069	0.057	0.000	0.054	0.027	0.000	0.040	0.063	0.059	0.051	0.071	0.076	0.568
1930	0.108	0.075	0.000	0.039	0.023	0.010	0.013	0.070	0.055	0.015	0.078	0.069	0.553
1931	0.085	0.027	0.098	0.041	0.042	0.013	0.043	0.040	0.058	0.062	0.075	0.078	0.003
1933	0.086	0.000	0.066	0.000	0.022	0.007	0.055	0.065	0.045	0.056	0.069	0.077	0.547
1934	0.077	0.030	0.022	0.047	0.040	0.046	0.062	0.044	0.062	0.056	0.075	0.076	0.637
1935	0.081	0.122	0.091	0.057	0.000	0.000	0.031	0.030	0.049	0.039	0.067	0.055	0.621
1936	0.050	0.010	0.037	0.000	0.000	0.032	0.061	0.070	0.063	0.047	0.069	0.062	0.502
1937	0.084	0.113	0.015	0.017	0.073	0.063	0.000	0.060	0.035	0.056	0.068	0.045	0.629
1938	0.020	0.065	0.000	0.039	0.000	0.000	0.047	0.038	0.038	0.018	0.062	0.054	0.380
1939	0.079	0.000	0.007	0.086	0.006	0.000	0.006	0.056	0.027	0.050	0.054	0.038	0.418
1940	0.087	0.052	0.027	0.053	0.050	0.068	0.000	0.008	0.061	0.059	0.061	0.084	0.671
1942	0.000	0.064	0.078	0.052	0.048	0.000	0.000	0.055	0.063	0.023	0.042	0.055	0.483
1943	0.090	0.033	0.085	0.034	0.000	0.016	0.060	0.070	0.021	0.062	0.071	0.079	0.620
1944	0.021	0.079	0.104	0.053	0.000	0.010	0.052	0.071	0.063	0.056	0.072	0.088	0.669
1945	0.042	0.081	0.070	0.000	0.000	0.014	0.044	0.060	0.055	0.061	0.073	0.089	0.588
1946	0.084	0.088	0.107	0.097	0.000	0.029	0.009	0.061	0.048	0.056	0.076	0.068	0.723
1947	0.069	0.042	0.022	0.033	0.026	0.000	0.050	0.053	0.063	0.056	0.069	0.079	0.563
1948	0.023	0.067	0.117	0.000	0.000	0.040	0.047	0.036	0.046	0.044	0.072	0.066	0.558
1949	0.086	0.045	0.041	0.033	0.001	0.000	0.000	0.043	0.050	0.057	0.049	0.081	0.485
1950	0.102	0.058	0.000	0.067	0.103	0.000	0.010	0.000	0.065	0.036	0.059	0.052	0.578
1952	0.017	0.032	0.000	0.000	0.000	0.000	0.002	0.068	0.063	0.042	0.061	0.080	0.443
1953	0.081	0.028	0.000	0.000	0.000	0.015	0.022	0.057	0.057	0,062	0.045	0.075	0.442
1954	0.060	0.028	0.025	0.000	0.000	0.000	0.017	0.047	0.037	0.053	0.075	0.080	0.422
1955	0.040	0.012	0.000	0.053	0.000	0.000	0.051	0.038	0.041	0.056	0.069	0.030	0.390
1956	0.073	0.080	0.069	0.071	0.019	0.000	0.000	0.043	0.041	0.022	0.045	0.064	0.527
1957	0.016	0.071	0.087	0.032	0.042	0.044	0.017	0.070	0.058	0.062	0.075	0.012	0.585
1958	0.056	0.078	0.007	0.015	0.000	0.040	0.064	0.070	0,062	0.038	0.073	0.076	0.580
1959	0.059	0.000	0.014	0.103	0,000	0.043	0.010	0.060	0.043	0.060	0.070	0.070	0.532
1960	0.093	0.014	0.000	0.039	0.000	0.000	0.000	0.057	0.044	0.057	0.045	0.084	0.810
1962	0.105	0.032	0.000	0.066	0.093	0.070	0.032	0.045	0.032	0.051	0.066	0.085	0.676
1963	0.078	0.074	0.090	0.089	0.059	0.086	0.047	0.063	0.063	0.062	0.074	0.082	0.866
1964	0.047	0.088	0.000	0.002	0.085	0.078	0.031	0.066	0.059	0.060	0.063	0.063	0.641
1965	0.094	0.063	0.104	0.027	0.000	0.075	0.053	0.064	0.060	0.056	0.072	0.054	0.721
1966	0.056	0.073	0.032	0.029	0.000	0.000	0.000	0.065	0.060	0.047	0.075	0.087	0.524
1967	0.069	0.040	0.091	0.103	0.052	0.003	0.026	0.035	0.036	0.051	0.066	0.086	0.657
1968	0.073	0.035	0.044	0.022	0.073	0.000	0.016	0.062	0.056	0.057	0.070	0.070	0.579
1969	0.000	0.100	0.040	0.091	0.050	0.084	0.001	0.051	0.051	0.045	0.074	0.074	0.718
1971	0.007	0.040	0.072	0.000	0.000	0.000	0.019	0.041	0.061	0.057	0.062	0.085	0.434
1972	0.036	0.053	0.112	0.075	0.044	0.025	0.000	0.062	0.056	0.043	0.070	0.003	0.580
1973	0.023	0.057	0.000	0.000	0.000	0.000	0.020	0.029	0.062	0.052	0.067	0.035	0.345
1974	0.089	0.035	0.044	0.010	0.000	0.000	0.032	0.049	0.049	0.061	0.066	0.083	0.519
1975	0.083	0.081	0.000	0.000	0.000	0.000	0.019	0.008	0.055	0.061	0.072	0.081	0.461
1976	0.079	0.045	0.092	0.000	0.000	0.000	0.023	0.058	0.063	0.062	0.054	0.019	0.494
1977	0.080	0.069	0.011	0.000	0.000	0.008	0.041	0.065	0.063	0.049	0.073	0.007	0.522
1978	0.038	0.053	0.034	0.021	0.000	0.016	0.056	0.063	0.063	0.059	0.047	0.035	0.491
1980	0.053	0.000	0.062	0.000	0.000	0.000	0.040	0.056	0.063	0.060	0.046	0.064	0.444
1981	0.047	0.026	0.068	0.069	0.076	0.049	0.003	0.027	0.063	0.059	0.072	0.069	0.629
1982	0.064	0.073	0.085	0.087	0.076	0.045	0.061	0.067	0.050	0.060	0.039	0.087	0.794
1983	0.043	0.063	0.087	0.102	0.055	0.000	0.037	0.070	0.060	0.000	0.062	0.071	0.650
1984	0.049	0.007	0.134	0.033	0.000	0.015	0.069	0.023	0.038	0.058	0.074	0.052	0.551
1985	0.042	0.092	0.081	0.059	0.042	0.041	0.000	0.056	0.052	0.060	0.060	0.079	0.670
1987	0.055	0.031	0.014	0.033	0.000	0.002	0.039	0.055	0.042	0.054	0.049	0.049	0.498
1988	0.000	0.093	0.078	0.091	0.000	0.067	0.040	0.063	0.044	0.056	0.066	0.084	0.683
1989	0.061	0.025	0.037	0.000	0.021	0.027	0.028	0.068	0.063	0.056	0.070	0.083	0.540
1990	0.065	0.059	0.036	0.005	0.012	0.000	0.075	0.060	0.033	0.062	0.074	0.075	0.555
1991	0.096	0.085	0.114	0.108	0.084	0.056	0.066	0.071	0.053	0.060	0.072	0.085	0.950
1992	0.087	0.091	0.041	0.097	0.013	0.000	0.054	0.069	0.051	0.045	0.059	0.083	0.690
1993	0.067	0.039	0.019	0.081	0.016	0.054	0.055	0.069	0.060	0.060	0.057	0.082	0.661
1994	0.037	0.110	0.054	0.062	0.000	0.009	0.025	0.051	0.062	0.058	0.058	0.083	0.610
1995	0.064	0.000	0.025	0.000	0.000	0.033	0.043	0.000	0.045	0.024	0.045	0.000	0.304
1990	0.043	0.050	0.086	0.000	0.077	0.058	0.052	0.071	0.062	0.017	0.067	0.057	0.638
1998	0.022	0.054	0.000	0.000	0.000	0.000	0.008	0.027	0.046	0.006	0.067	0.078	0.308
1999	0.079	0.032	0.059	0.000	0.004	0.000	0.055	0.050	0.043	0.042	0.055	0.069	0.487
2000	0.039	0.069	0,065	0.114	0.000	0.033	0.042	0.050	0.059	0.048	0.073	0.078	0.670
2001	0.037	0.000	0.042	0.061	0.055	0.077	0.055	0.066	0.032	0.058	0.065	0.072	0.620
2002	0.047	0.113	0.083	0.086	0.062	0,058	0.072	0.068	0.030	0.056	0.075	0.055	0.805
2003	0.059	0.081	0.097	0.074	0.000	0.000	0.000	0.067	0.054	0.053	0.057	0.078	0.620
2004	0.069	0.098	0.018	0.039	0.086	0.032	0.022	0.056	0.055	0.060	0.066	0.069	0.009
2005	0.065	0.049	0.051	0.055	0.004	0.000	0.000	0.000	0.045	0.042	0.000	0.009	0.514
Average	0.063	0.057	0.052	0.043	0.026	0.024	0.034	0.053	0.052	0.050	0.064	0.068	0.584
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	g issue	a sam	10000000	(general)	100000	generation and	and the second second	12/2/10/06	12020000	2020	1202000		10 <u>1</u> 07000000
(m3/s)	0.024	0.022	0.019	0.016	0.011	0.009	0.013	0.020	0.020	0.019	0.024	0.026	0.019

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	E	381B12								
Vaaa	0.4	Maria	Dee	1	Monthly in	rigation der	mand in 10	^6m^3	lun	Int	Aug	Son	Total
1925	0.204	0.115	0.129	0.097	0.000	0.000	0.112	0.101	0.096	0.010	0.110	0.105	1.018
1926	0.171	0.112	0.114	0.000	0.078	0.029	0.058	0.086	0.086	0.061	0.108	0.122	1.023
1927	0.026	0.119	0.137	0.000	0.073	0.050	0.000	0.062	0.099	0.075	0.085	0.132	0.858
1928	0.140	0.110	0.089	0.092	0.000	0.000	0.059	0.102	0.043	0.082	0.082	0.116	0.914
1929	0.110	0.080	0.000	0.072	0.030	0.000	0.064	0.100	0.092	0.080	0.111	0.120	0.859
1930	0.173	0.021	0.000	0.046	0.023	0.010	0.021	0.110	0.085	0.021	0.118	0.109	0.828
1931	0.120	0.051	0.145	0.000	0.054	0.018	0.065	0.104	0.098	0.092	0.108	0.125	1.075
1933	0.139	0.000	0.092	0.000	0.021	0.005	0.088	0.102	0.069	0.087	0.107	0.122	0.832
1934	0.123	0.037	0.020	0.060	0.051	0.069	0.099	0.068	0.097	0.087	0.118	0.120	0.950
1935	0.130	0.187	0.133	0.077	0.000	0.000	0.050	0.045	0.076	0.060	0.105	0.085	0.948
1936	0.080	0.003	0.045	0.000	0.000	0.047	0.098	0.110	0.099	0.073	0.107	0.098	0.760
1937	0.135	0.172	0.008	0.010	0.104	0.097	0.000	0.095	0.053	0.087	0.106	0.070	0.938
1938	0.031	0.094	0.000	0.046	0.000	0.000	0.075	0.058	0.058	0.027	0.097	0.083	0.569
1935	0.120	0.000	0.028	0.071	0.067	0.105	0.000	0.108	0.096	0.092	0.095	0.132	1.006
1941	0.105	0.134	0.113	0.068	0.135	0.000	0.074	0.045	0.069	0.070	0.064	0.051	0.929
1942	0.039	0.093	0.023	0.151	0.064	0.000	0.000	0.086	0.099	0.035	0.031	0.087	0.708
1943	0.145	0.041	0.124	0.038	0.000	0.021	0.097	0.110	0.030	0.097	0.111	0.125	0.938
1944	0.032	0.117	0.155	0.069	0.000	0.011	0.083	0.111	0.099	0.088	0.113	0.139	1.017
1945	0.066	0.120	0.100	0.000	0.000	0.017	0.070	0.094	0.086	0.095	0.114	0.141	0.902
1946	0.134	0.132	0.161	0.142	0.000	0.041	0.014	0.095	0.075	0.086	0.118	0.107	0.834
1948	0.110	0.097	0.177	0.000	0.028	0.059	0.075	0.056	0.072	0.067	0.103	0.104	0.855
1949	0.139	0.061	0.051	0.037	0.000	0.000	0.000	0.066	0.078	0.088	0.076	0.128	0.724
1950	0.164	0.082	0.000	0.093	0.154	0.000	0.025	0.000	0.099	0.089	0.092	0.080	0.878
1951	0.024	0.153	0.093	0.084	0.047	0.087	0.061	0.091	0.078	0.055	0.090	0.140	1.003
1952	0.118	0.040	0.020	0.000	0.000	0.000	0.002	0.107	0.099	0.064	0.096	0.127	0.671
1953	0.131	0.034	0.000	0.000	0.000	0.018	0.035	0.089	0.089	0.097	0.069	0.119	0.679
1954	0.095	0.033	0.025	0.000	0.000	0.000	0.028	0.073	0.056	0.082	0.118	0.127	0.638
1955	0.063	0.006	0.000	0.070	0.000	0.000	0.082	0.059	0.065	0.087	0.108	0.043	0.585
1957	0.023	0.103	0.127	0.036	0.054	0.066	0.027	0.110	0.091	0.096	0.117	0.016	0.866
1958	0.090	0.115	0.000	0.008	0.000	0.059	0.104	0.111	0.097	0.058	0.114	0.120	0.874
1959	0.094	0.000	0.006	0.152	0.000	0.064	0.015	0.095	0.067	0.094	0.109	0.110	0.805
1960	0.149	0.010	0.000	0.130	0.000	0.000	0.000	0.089	0,068	0.057	0.069	0.107	0.679
1961	0.149	0.135	0.116	0.048	0.117	0,097	0.038	0.089	0.099	0.096	0.118	0.132	1.234
1962	0.169	0.040	0.000	0.092	0.137	0.108	0.051	0.069	0.049	0.079	0.103	0.134	1.030
1963	0.125	0.108	0.152	0.150	0.082	0.134	0.075	0.100	0.099	0.097	0.098	0.098	0.987
1965	0.151	0.090	0.156	0.027	0.000	0.116	0.085	0.100	0.094	0.088	0.112	0.084	1.103
1966	0.090	0.106	0.037	0.030	0.000	0.000	0.000	0.102	0.094	0.072	0.118	0.138	0.788
1967	0.110	0.053	0.133	0.152	0.070	0.000	0.042	0.054	0.055	0.078	0.103	0.136	0.987
1968	0.117	0.044	0.057	0.019	0.105	0.000	0.026	0.098	0.087	0.089	0.110	0.111	0.862
1969	0.000	0.152	0.050	0.132	0.067	0.130	0.098	0.079	0.079	0.067	0.116	0.117	1.086
1970	0.108	0.142	0.102	0.000	0.054	0.127	0.000	0.037	0.085	0.097	0.117	0.118	0.985
1971	0.025	0.053	0.067	0.000	0.000	0.000	0.031	0.064	0.095	0.067	0.110	0.001	0.050
1973	0.036	0.080	0.000	0.000	0.000	0.000	0.031	0.045	0.097	0.081	0.104	0.053	0.527
1974	0.144	0.045	0.057	0.000	0.000	0.000	0.051	0.077	0.076	0.094	0.103	0.131	0.779
1975	0.133	0.121	0.000	0.000	0.000	0.000	0.031	0.010	0.085	0.096	0.112	0.129	0.717
1976	0.126	0.061	0.136	0.000	0.000	0,000	0.037	0.091	0.099	0.097	0.083	0.027	0.756
1977	0.128	0.100	0.002	0.000	0.000	0.004	0.066	0.099	0.099	0.076	0.114	0.106	0.794
1978	0.132	0.009	0.129	0.017	0.051	0,006	0.072	0.077	0.096	0.077	0.034	0.112	0.812
1980	0.085	0.000	0.040	0.023	0.000	0.020	0.050	0.088	0.099	0.093	0.071	0.101	0.686
1981	0.075	0.030	0.097	0.096	0.110	0.075	0.005	0.040	0.099	0.092	0.112	0.109	0.940
1982	0.101	0.108	0.124	0.126	0.109	0.068	0.097	0.106	0.078	0.093	0.060	0.137	1.209
1983	0.069	0.090	0.127	0.150	0.075	0.000	0.059	0.111	0.093	0.000	0.097	0.112	0.984
1984	0.077	0.000	0.203	0.037	0.000	0.019	0.111	0.035	0.058	0.090	0.115	0.081	0.828
1985	0.067	0.137	0.117	0.080	0.055	0.062	0.000	0.088	0.080	0.094	0.102	0.124	1.007
1986	0.055	0.058	0.126	0.139	0.000	0.078	0.093	0.088	0.020	0.084	0.033	0.021	0.835
1988	0.000	0.140	0.113	0.133	0.000	0.103	0.065	0.100	0.068	0.087	0.103	0.133	1.045
1989	0.097	0.028	0.045	0.000	0.020	0.039	0.045	0.108	0.098	0.086	0.109	0.132	0.808
1990	0.104	0.084	0.043	0.000	0.005	0.000	0.120	0.094	0.050	0.097	0.116	0.118	0.830
1991	0.154	0.127	0.172	0.159	0.123	0.086	0.106	0.111	0.083	0.094	0.112	0.135	1.463
1992	0.139	0.136	0.052	0.142	0.007	0.000	0.086	0.109	0.079	0.069	0.092	0.132	1.044
1993	0.108	0.051	0.015	0.116	0.012	0.083	0.089	0.109	0.095	0.094	0.089	0.130	0.989
1994	0.059	0.16/	0.074	0.085	0.000	0.009	0.040	0.080	0.097	0.091	0.090	0.131	0.923
1995	0.105	0.000	0.024	0.000	0.000	0.000	0.087	0.000	0.099	0.080	0.113	0.031	0.789
1997	0.067	0.070	0.125	0.000	0.111	0.088	0.084	0.111	0.097	0.024	0.104	0.089	0.970
1998	0.033	0.076	0.000	0.000	0.000	0.000	0.013	0.041	0.071	0.006	0.105	0.124	0.468
1999	0.126	0.040	0.082	0.000	0.000	0.000	0.089	0.078	0.066	0.064	0.085	0.108	0.739
2000	0.061	0.100	0.091	0.170	0.000	0.048	0.068	0.079	0.092	0.075	0.115	0.122	1.021
2001	0.059	0.000	0.054	0.084	0.076	0.119	0.088	0.104	0.049	0.090	0.101	0.113	0.937
2002	0.074	0.172	0.121	0.125	0.087	0.089	0.116	0.107	0.045	0.087	0.11/	0.085	1.226
2003	0.110	0.148	0.013	0.047	0.126	0.047	0.035	0.088	0.085	0.093	0.103	0.108	1.003
2005	0.133	0.068	0.036	0.036	0.000	0.000	0.089	0.078	0.066	0.064	0.085	0.108	0.765
17120225		12015030751	1.433	10000000	NUMBER OF	608246707	60 90 1973						
Average	0.100	0.082	0.072	0.058	0.035	0.036	0.054	0.084	0.080	0.077	0.099	0.106	0.883
10.001/01/02/10/10/10/10/10	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average (m3/s)	0.037	0.032	0.027	0,022	0 014	0.013	0.021	0,031	0,031	0.029	0.037	0.041	0.028

FIXED AREA II	RRIGATION	DEMAND 1	IME SERIES	E	381B14								
Vear	Oct	Nov	Dec	lan	Monthly in Feb	rigation der Mar	mand in 10 ⁴	16m^3 May	lun	Int	Διισ	Sen	Total
1925	0.204	0.451	0.508	0.401	0.000	0.021	0.388	0.357	0.344	0.052	0.401	0.381	3.810
1926	0.607	0.440	0.456	0.025	0.320	0.121	0.201	0.305	0.307	0.226	0.392	0.439	3.841
1927	0.110	0.464	0.535	0.000	0.304	0.194	0.000	0.222	0.353	0.274	0.315	0.475	3.247
1928	0.501	0.435	0.371	0.381	0.000	0.000	0.205	0.360	0.161	0.299	0.304	0.418	3.433
1929	0.614	0.332	0.007	0.226	0.133	0.056	0.076	0.388	0.305	0.090	0.404	0.395	3.149
1931	0.488	0.164	0.564	0.238	0.238	0.084	0.253	0.225	0.327	0.349	0.418	0.445	3.793
1932	0.433	0.600	0.242	0.000	0.265	0.298	0.228	0.369	0.351	0.335	0.392	0.482	3.995
1933	0.495	0.000	0.383	0.000	0.127	0.042	0.305	0.360	0.250	0.315	0.392	0.439	3.106
1934	0.443	0.183	0.135	0.273	0.230	0.258	0.344	0.245	0.346	0.318	0.427	0.434	3.634
1935	0.466	0.698	0.524	0.332	0.000	0.000	0.174	0.166	0.273	0.222	0.383	0.314	3.550
1935	0.294	0.068	0.093	0.000	0.000	0.183	0.339	0.388	0.353	0.268	0.388	0.357	2.862
1938	0.126	0.377	0.000	0.226	0.000	0.000	0.261	0.211	0.211	0.109	0.357	0.307	2.183
1939	0.452	0.000	0.050	0.491	0.035	0.000	0.033	0.310	0.154	0.341	0.310	0.219	2.396
1940	0.500	0.307	0.161	0.309	0.283	0.383	0.000	0.380	0.342	0.335	0.349	0.475	3.823
1941	0.380	0.516	0.455	0.301	0.516	0.000	0.257	0.163	0.251	0.258	0.242	0.197	3.537
1942	0.155	0.376	0.147	0.584	0.274	0.000	0.000	0.307	0.352	0.136	0.127	0.318	2.775
1945	0.517	0.198	0.491	0.197	0.000	0.093	0.335	0,388	0.110	0.349	0.405	0.449	3,558
1945	0.245	0.468	0.408	0.000	0.000	0.080	0.244	0.332	0.307	0.344	0.416	0.506	3.350
1946	0.479	0.509	0.616	0.555	0.000	0.164	0.052	0.338	0.271	0.314	0.430	0.388	4.117
1947	0.397	0.250	0.133	0.191	0.150	0.000	0.281	0.295	0.353	0.317	0.396	0.451	3.213
1948	0.138	0.390	0.673	0.000	0.000	0.223	0.261	0.202	0.259	0.249	0.411	0.379	3.185
1949	0.495	0.265	0.241	0.193	0.005	0.000	0.000	0.238	0.283	0.320	0.283	0.462	2.784
1950	0.584	0.338	0.000	0.385	0.580	0.000	0.087	0.000	0.353	0.325	0.338	0.296	3.285
1952	0.423	0.193	0.134	0.000	0.000	0.000	0.010	0.377	0.353	0.238	0.351	0.456	2.535
1953	0.467	0.172	0.000	0.000	0.000	0.083	0.124	0.318	0.318	0.349	0.258	0.428	2.517
1954	0.347	0.168	0.154	0.000	0.000	0.000	0.098	0.260	0.207	0.301	0.429	0.457	2.419
1955	0.235	0.077	0.000	0.307	0.000	0.000	0.283	0.213	0.230	0.317	0.395	0.178	2.234
1956	0.418	0.463	0.401	0.407	0.110	0.000	0.000	0.241	0.233	0.128	0.262	0.363	3.026
1957	0.100	0.411	0.501	0.189	0.240	0.248	0.094	0.388	0.326	0.348	0.425	0.077	3.340
1959	0.342	0.000	0.088	0.588	0.000	0.240	0.056	0.336	0.243	0.339	0.398	0.398	3.027
1960	0.531	0.092	0.000	0.511	0.000	0.000	0.003	0.317	0.246	0.211	0.259	0.388	2.559
1961	0.532	0.518	0.464	0.230	0.455	0.354	0.134	0.318	0.353	0.347	0.430	0.475	4.608
1962	0,598	0.193	0.000	0.382	0.522	0.392	0.180	0.249	0.183	0.288	0.375	0.481	3.841
1963	0.449	0.428	0.520	0.511	0.333	0.481	0.260	0.353	0.353	0.349	0.418	0.465	4.922
1965	0.538	0.366	0.600	0.160	0.000	0.439	0.296	0.354	0.335	0.338	0.407	0.309	4.105
1966	0.327	0.422	0.193	0.170	0.000	0.000	0.000	0.362	0.336	0.266	0.427	0.494	2.999
1967	0.396	0.238	0.523	0.589	0.293	0.018	0.149	0.195	0.201	0.287	0.377	0.488	3.754
1968	0.422	0.208	0.261	0.131	0.412	0.000	0.092	0.346	0.312	0.322	0.401	0.402	3.311
1969	0.000	0.578	0.237	0.519	0.282	0.469	0.338	0.283	0.285	0.246	0.421	0.421	4.081
1970	0.389	0.542	0.416	0.000	0.239	0.456	0.000	0.138	0.303	0.349	0.424	0.425	3.684
1971	0.214	0.312	0.644	0.430	0.249	0.144	0.000	0.348	0.311	0.247	0.400	0.025	3.324
1973	0.142	0.332	0.000	0.000	0.000	0.000	0.111	0.164	0.346	0.297	0.380	0.205	1.976
1974	0.512	0.210	0.262	0.065	0.000	0.000	0.180	0.274	0,274	0,342	0.378	0.472	2.968
1975	0.477	0.471	0.000	0.000	0.000	0.000	0.108	0.044	0.306	0.347	0.409	0.463	2.626
1976	0.451	0.266	0.532	0.000	0.000	0.000	0.130	0.325	0.352	0.349	0.307	0.114	2.826
1977	0.458	0.400	0.075	0.000	0.000	0.035	0.229	0.332	0.333	0.282	0.138	0.384	3,159
1979	0.227	0.311	0.203	0.152	0.000	0.092	0.313	0.352	0.353	0.335	0.274	0.204	2.814
1980	0.310	0.000	0.361	0.000	0.000	0.000	0.222	0.312	0.353	0.338	0.264	0.367	2.527
1981	0.276	0.160	0.399	0.396	0.431	0.278	0.019	0.149	0.353	0.334	0.409	0.394	3.598
1982	0.368	0.426	0,492	0.500	0.427	0.256	0.337	0.374	0.280	0.337	0.228	0.492	4.519
1983	0.255	0.365	0.502	0.583	0.312	0.000	0.205	0.391	0.333	0.000	0.357	0.406	3.710
1985	0.248	0.528	0.467	0.341	0.241	0.234	0.000	0.312	0.289	0.342	0.375	0.448	3.826
1986	0.208	0.186	0.500	0.543	0.000	0.290	0.330	0.304	0.238	0.349	0.342	0.092	3.384
1987	0.395	0.384	0.087	0.440	0.000	0.000	0.217	0.380	0.081	0,306	0.280	0.284	2.854
1988	0.007	0.538	0.455	0.522	0.000	0.376	0.226	0.353	0.245	0.315	0.377	0.479	3.891
1989	0.353	0.154	0.220	0.000	0.121	0.155	0.158	0.380	0.350	0.315	0.398	0.474	3.079
1990	0.577	0.545	0.215	0.033	0.071	0.000	0.413	0.333	0.183	0.345	0.423	0.425	5 397
1992	0.496	0.523	0.244	0.554	0.078	0.000	0.300	0.386	0.285	0.256	0.338	0.474	3.933
1993	0.389	0.230	0.119	0.463	0.093	0.306	0.308	0.384	0.338	0.341	0.327	0.469	3.767
1994	0.221	0.629	0.320	0.359	0.000	0.052	0.140	0.287	0.347	0.330	0.331	0.470	3.486
1995	0.372	0.000	0.149	0.000	0.000	0.186	0.241	0.000	0.252	0.137	0.258	0.486	2.081
1996	0.396	0.316	0.411	0.000	0.000	0.000	0.301	0.329	0.352	0.292	0.411	0.129	2.939
1997	0.134	0.316	0.000	0.000	0.000	0.000	0.046	0.151	0.258	0.037	0.383	0.446	1.771
1999	0.452	0.192	0.347	0.000	0.022	0.000	0.309	0.280	0.241	0.238	0.315	0.393	2.788
2000	0.227	0.400	0.380	0.650	0.000	0.185	0.236	0.281	0.329	0.275	0.418	0 441	3.823
2001	0.221	0.000	0.250	0.353	0.313	0.431	0.307	0.367	0.183	0.326	0.370	0.409	3.530
2002	0.274	0.647	0.480	0.494	0.352	0.326	0.400	0.379	0.168	0.318	0.426	0.314	4.578
2003	0.342	0.466	0.560	0.426	0.000	0.000	0.000	0.372	0.301	0.301	0.326	0.444	3.539
2004	0.339	0.290	0.188	0.192	0.480	0.000	0.309	0.280	0.241	0.238	0.315	0.393	2.944
2000													
Average	0.354	0.335	0.304	0.245	0.148	0.136	0.189	0.298	0.289	0.282	0.363	0.385	3.332
÷	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average (m2/c)	0 1 2 2	0 1 2 0	0 11 3	0.001	0.061	O OF 1	0 079	0 1 1 1	0 111	0.105	0.125	0.140	0 105
(113/3)	0.152	0.145	0.110	0.051	0.001	0.051	0.075	0.111	0.111	0.105	0.100	0.145	0.100

Dec

0.145

0.123

0.158

0.085

B81B16

Jan

0.102

0.000

0.000

0.093

FIXED AREA IRRIGATION DEMAND TIME SERIES

Nov

0.138

0.133

0.143

0.130

Oct

0.204

0.236

0.011

0.186

Year

1925

1926

1927

1928

ent P	roject	(GLe\	NaP)						C-34
31B16									
Monthly i	rigation de	mand in 10 ⁴	^6m^3						
Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total	
0.000	0.000	0.127	0.110	0.111	0.000	0.131	0.128	1.181	
0.080	0.000	0.040	0.086	0.094	0.059	0.127	0.156	1.133	
0.072	0.029	0.000	0.048	0.115	0.081	0.091	0.172	0.920	
0.000	0.000	0.042	0.111	0.026	0.093	0.086	0.146	0,999	
0.008	0.000	0.050	0.108	0.105	0.089	0.133	0.153	0.931	
0.000	0.000	0.000	0.124	0.093	0.000	0.144	0.135	0.894	
0.043	0.000	0.064	0.049	0.103	0.116	0.139	0.158	1.068	
0.055	0.076	0.052	0.116	0.114	0,110	0.127	0.175	1.217	
0.000	0.000	0.088	0.112	0.067	0.100	0.127	0.155	0.923	
0.039	0.057	0.106	0.058	0.112	0.102	0.143	0.153	0.997	
0.000	0.000	0.028	0.022	0.078	0.057	0.122	0.097	1.050	
0.000	0.024	0.104	0.124	0.115	0.078	0.126	0.117	0.804	
0.120	0.101	0.000	0.101	0.042	0.101	0.125	0.073	1.068	
0.000	0.000	0.067	0.043	0.049	0.005	0.110	0.094	0.518	
0.000	0.000	0.000	0.088	0.023	0.112	0.089	0.054	0.672	
0.063	0.114	0.000	0.121	0.110	0,110	0.107	0.172	1.118	
0.169	0.000	0.066	0.021	0.068	0.074	0.057	0.044	0.977	
0.059	0.000	0.000	0.087	0.114	0.017	0.005	0.099	0.700	
0.000	0.000	0.102	0.125	0.006	0.116	0.133	0.160	1.015	
0.000	0.000	0.080	0.127	0.115	0.102	0.135	0.184	1.149	
0.000	0.000	0.060	0.098	0.094	0.114	0.138	0.187	1.007	
0.000	0.015	0.000	0.101	0.077	0.100	0.144	0.132	1.275	
0.005	0.000	0.077	0.081	0.115	0.101	0.129	0.161	0.869	
0.000	0.042	0.068	0.039	0.071	0.070	0.135	0.127	0.905	
0.000	0.000	0.000	0.055	0.082	0.102	0.076	0.166	0.766	
0.199	0.000	0.000	0.000	0.115	0.105	0.102	0.089	1.016	
0.033	0.085	0.046	0.094	0.081	0.050	0.098	0.184	1.050	
0.000	0.000	0.000	0.119	0.115	0.064	0.108	0.164	0.746	
0.000	0.000	0.005	0.092	0.099	0.116	0.065	0.150	0.714	

1929	0.139	0.084	0.000	0.064	0.008	0.000	0.050	0.108	0.105	0.089	0.133	0.153	0.931
1930	0.240	0.131	0.000	0.027	0.000	0.000	0.000	0.124	0.093	0.000	0.144	0.135	0.894
1931	0.180	0.013	0.171	0.032	0.043	0.000	0.064	0.049	0.103	0.116	0.139	0.158	1.068
1932	0.155	0.205	0.031	0.000	0.055	0.076	0.052	0.116	0.114	0,110	0.127	0.175	1.217
1933	0.184	0.000	0.091	0.000	0.000	0.000	0.088	0.112	0.067	0.100	0.127	0.155	0.923
1934	0 160	0.021	0.000	0.047	0.039	0.057	0.106	0.058	0.112	0.102	0.143	0.153	0.997
1935	0.170	0.251	0.152	0.072	0.000	0.000	0.028	0.022	0.078	0.057	0.122	0.097	1.050
1936	0.092	0.000	0.023	0.000	0.000	0.024	0.104	0.124	0.115	0.078	0.126	0 117	0.804
1930	0.052	0.000	0.025	0.000	0.000	0.101	0.000	0.101	0.042	0.101	0.125	0.073	1.068
1029	0.178	0.227	0.000	0.000	0.120	0.000	0.000	0.101	0.042	0.005	0.110	0.094	0.519
1938	0.018	0.105	0.000	0.027	0.000	0.000	0.007	0.043	0.049	0.003	0.110	0.054	0.510
1939	0.164	0.000	0.000	0.142	0.000	0.000	0.000	0.088	0.025	0.112	0.089	0.054	0.072
1940	0.185	0.074	0.000	0.062	0.063	0.114	0.000	0.121	0,110	0,110	0.107	0.172	1,118
1941	0.131	0.167	0.122	0.059	0.169	0.000	0.066	0.021	0.068	0.074	0.057	0.044	0.977
1942	0.030	0.104	0.000	0.184	0.059	0.000	0.000	0.087	0.114	0.017	0.005	0.099	0.700
1943	0.194	0.027	0.138	0.015	0.000	0.000	0.102	0.125	0.006	0.116	0.133	0.160	1.015
1944	0.020	0.140	0.186	0.060	0.000	0.000	0.080	0.127	0.115	0.102	0.135	0.184	1.149
1945	0.070	0.145	0.102	0.000	0.000	0.000	0.060	0.098	0.094	0.114	0.138	0.187	1.007
1946	0.176	0.164	0.194	0.171	0.000	0.015	0.000	0.101	0.077	0.100	0.144	0.132	1.275
1947	0.139	0.049	0.000	0.013	0.005	0.000	0.077	0.081	0.115	0.101	0.129	0.161	0.869
1948	0.023	0.110	0.220	0.000	0.000	0.042	0.068	0.039	0.071	0.070	0.135	0.127	0.905
1949	0.184	0.055	0.031	0.013	0.000	0.000	0.000	0.055	0.082	0.102	0.076	0.166	0.766
1950	0.225	0.087	0.000	0.095	0.199	0.000	0.000	0.000	0.115	0.105	0.102	0.089	1.016
1951	0.008	0.197	0.091	0.081	0.033	0.085	0.046	0.094	0.081	0.050	0.098	0.184	1.050
1952	0.151	0.025	0.000	0.000	0.000	0.000	0.000	0.119	0.115	0.064	0.108	0.164	0.746
1953	0.171	0.016	0.000	0.000	0.000	0.000	0.005	0.092	0.099	0.116	0.065	0.150	0.714
1954	0.116	0.014	0.000	0.000	0.000	0.000	0.000	0.065	0.047	0.093	0.144	0.164	0.643
1955	0.065	0.000	0.000	0.061	0.000	0.000	0.078	0.044	0.058	0.101	0.128	0.035	0.570
1956	0.149	0 143	0.098	0 105	0.000	0.000	0.000	0.056	0.059	0.013	0.066	0.120	0.810
1057	0.007	0 110	0 147	0.103	0.000	0.000	0.000	0.124	0.000	0.116	0.142	0.000	0 861
1957	0.007	0.129	0.142	0.0012	0.000	0.033	0.112	0.124	0.112	0.054	0.142	0.000	0.001
1938	0.112	0.000	0.000	0.196	0.000	0.042	0.000	0.120	0.064	0.110	0.137	0.132	0.901
1959	0.115	0.000	0.000	0.100	0.000	0.049	0.000	0.100	0.004	0.052	0.125	0.130	0.050
1960	0.201	0.000	0.000	0.151	0.000	0.000	0.000	0.092	0.005	0.052	0.005	0.131	0.756
1961	0.201	0.168	0.126	0.029	0.141	0.101	0.010	0.092	0.115	0.115	0.144	0.172	1.413
1962	0.232	0.025	0.000	0,094	0.1/1	0.118	0,031	0.060	0.036	0.088	0.119	0.175	1.149
1963	0.163	0.127	0.151	0.151	0.085	0.160	0.067	0.108	0.115	0.116	0.139	0.168	1.551
1964	0.082	0.163	0.000	0.000	0.151	0.140	0.029	0.115	0.104	0.111	0.112	0.118	1.126
1965	0.204	0.100	0.187	0.000	0.000	0.131	0.084	0.109	0.107	0.102	0.134	0.095	1.252
1966	0.107	0.124	0.012	0.004	0.000	0.000	0.000	0.112	0.107	0.078	0.143	0.181	0.869
1967	0.138	0.044	0.152	0.186	0.067	0.000	0.016	0.035	0.045	0.087	0.120	0.178	1.070
1968	0.150	0.031	0.039	0.000	0.121	0.000	0.000	0.105	0.096	0.104	0.131	0.138	0.916
1969	0.000	0.195	0.029	0.155	0.063	0.154	0.103	0.076	0.084	0.068	0.141	0.147	1.214
1970	0.135	0.179	0.105	0.000	0.043	0.148	0.000	0.010	0.092	0.116	0.142	0.149	1.120
1971	0.008	0.045	0.054	0.000	0.000	0.000	0.000	0.052	0.110	0.104	0.111	0.176	0.659
1972	0.056	0.076	0.207	0.115	0.048	0.007	0.000	0.106	0.095	0.069	0.130	0.000	0.908
1973	0.025	0.085	0.000	0.000	0.000	0.000	0.000	0.021	0.112	0.092	0.121	0.048	0.502
1974	0.192	0.032	0.040	0.000	0.000	0.000	0.030	0.072	0.078	0.113	0.120	0.171	0.848
1975	0.176	0.147	0.000	0.000	0.000	0.000	0.000	0.000	0.093	0.115	0.135	0.167	0.832
1976	0.164	0.056	0.156	0.000	0.000	0.000	0.008	0.095	0.115	0.116	0.088	0.007	0.804
1977	0.167	0.115	0.000	0.000	0.000	0.000	0.053	0.108	0.115	0.083	0.137	0.130	0.908
1978	0.174	0.000	0.146	0.000	0.039	0.000	0.063	0.072	0.110	0.085	0.010	0.140	0.838
1979	0.062	0.075	0.016	0.000	0.000	0.000	0.091	0.108	0.115	0.109	0.072	0.047	0.696
1980	0.099	0.000	0.081	0.000	0.000	0.000	0.050	0.089	0.115	0.111	0.068	0 122	0.735
1981	0.084	0.011	0.097	0.100	0.130	0.066	0.000	0.015	0.115	0.109	0.135	0.134	0.996
1982	0.125	0.126	0.138	0.146	0.128	0,056	0.103	0.118	0.081	0.111	0.051	0.180	1.365
1983	0.074	0.099	0.143	0.183	0.076	0.000	0.042	0.126	0.106	0.000	0.111	0.140	1.100
1984	0.088	0.000	0.262	0.013	0.000	0.000	0.124	0.006	0.050	0.106	0.139	0.091	0.880
1985	0.071	0.172	0.128	0.076	0.045	0.046	0.000	0.089	0.085	0.113	0.119	0.160	1.104
1986	0.054	0.022	0 142	0 165	0.000	0.072	0.100	0.086	0.062	0.116	0 104	0.000	0.922
1987	0.138	0.108	0.000	0.119	0.000	0.000	0.047	0.121	0.000	0.096	0.075	0.084	0.787
1988	0.000	0 177	0.122	0.155	0.000	0,111	0.051	0.108	0.065	0.100	0,120	0,174	1,184
1020	0 119	0.009	0.022	0.000	0,000	0.011	0.021	0.121	0.114	0 100	0.130	0.172	0.818
1000	0.129	0.000	0.010	0.000	0.000	0.000	0.120	0.000	0.037	0.116	0.141	0 1/0	0.920
1001	0.129	0.090	0.015	0.000	0.000	0.000	0.135	0.035	0.037	0.112	0.124	0.145	1 764
1005	0.208	0.130	0.212	0.197	0.131	0.064	0.025	0.127	0.009	0.112	0 102	0.175	1 100
1995	0.184	0.170	0.032	0.170	0.000	0.000	0.085	0.124	0.085	0.112	0.102	0.1/2	1.190
1993	0.135	0.041	0.000	0.129	0.000	0.079	0.089	0.123	0.108	0.112	0.097	0.109	1.082
1994	0.059	0.219	0.064	0.084	0.000	0.000	0.015	0.077	0.112	0.107	0.099	0.170	1.004
1995	0.127	0.000	0.000	0.000	0.000	0.025	0.058	0.000	0.068	0.018	0.065	0.1//	0.539
1996	0.138	0.078	0.103	0.000	0.000	0.000	0.086	0.097	0.115	0.090	0.136	0.014	0.856
1997	0.072	0.069	0.140	0.000	0.131	0.088	0.081	0.127	0.113	0.000	0.121	0.103	1.044
1998	0.021	0.078	0.000	0.000	0.000	0.000	0.000	0.015	0.071	0.000	0.123	0.158	0.466
1999	0.164	0.025	0.075	0.000	0.000	0.000	0.090	0.074	0.063	0.064	0.091	0.134	0.780
2000	0.062	0.115	0.089	0.214	0,000	0.025	0.056	0.075	0.104	0.081	0.139	0.156	1.117
2001	0.059	0.000	0.035	0.081	0.076	0.137	0.089	0.115	0.036	0.105	0.116	0.141	0.991
2002	0.083	0.227	0.133	0.143	0.094	0.088	0.132	0.120	0.029	0.101	0.143	0.097	1.392
2003	0.114	0.144	0.169	0.113	0.000	0.000	0.000	0.117	0.091	0.094	0.096	0.158	1.095
2004	0.139	0.189	0.000	0.027	0.155	0.023	0.004	0.089	0.093	0.111	0.120	0.134	1.085
2005	0.175	0.066	0.010	0.013	0.000	0.000	0.090	0.074	0.063	0.064	0.091	0.134	0.780
Average	0.123	0.093	0.073	0.058	0.036	0.032	0.046	0.085	0.086	0.086	0.113	0.131	0.961
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average													
(m3/s)	0.046	0.036	0.027	0.022	0.015	0.012	0.018	0.032	0.033	0.032	0.042	0.051	0.030

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	E	381B20								
Veed	0.4	Neu	Dec	lari	Monthly	irrigation der	mand in 10	^6m^3	lun	tol	Aug	Son	Total
1925	0 204	0.040	0.048	Jan 0.040	0.000	0.000	0.046	0.039	0.038	0.000	0.045	0.033	0.383
1926	0.073	0.035	0.044	0.000	0.033	0.000	0.018	0.028	0.033	0.030	0.041	0.048	0.383
1927	0.000	0.043	0.045	0.000	0.023	0.019	0.012	0.035	0.041	0.030	0.028	0.048	0.323
1928	0.064	0.031	0.036	0.005	0.000	0.000	0.014	0.043	0.017	0.028	0.029	0.035	0.300
1929	0.035	0.032	0.000	0.026	0.000	0.000	0.021	0.042	0.041	0.029	0.045	0.044	0.314
1930	0.077	0.038	0.000	0.000	0.000	0.000	0.000	0.042	0.035	0.000	0.049	0.049	0.289
1931	0.051	0.000	0.063	0.000	0.014	0.000	0.024	0.012	0.037	0.040	0.049	0.050	0.345
1932	0.038	0.000	0.020	0.000	0.000	0.000	0.021	0.039	0.025	0.034	0.042	0.049	0.275
1934	0.047	0.000	0.000	0.005	0.012	0.020	0.038	0.020	0.038	0.036	0.047	0.044	0.307
1935	0.047	0.083	0.049	0.015	0.000	0.000	0.006	0.006	0.025	0.026	0.043	0.034	0.335
1936	0.019	0.000	0.000	0.000	0.000	0.000	0.030	0.044	0.040	0.031	0.043	0.032	0.238
1937	0.051	0,077	0.000	0.000	0.034	0.034	0.000	0.037	0.016	0.035	0.041	0.014	0.339
1938	0.002	0.033	0.000	0.000	0.000	0.000	0.019	0.015	0.019	0.000	0.037	0.021	0.145
1939	0.048	0.000	0.000	0.047	0.000	0.000	0.000	0.036	0.007	0.039	0.030	0.011	0.21/
1940	0.057	0.023	0.000	0.045	0.027	0.044	0.000	0.044	0.040	0.037	0.037	0.057	0.412
1941	0.039	0.059	0.050	0.029	0.001	0.000	0.030	0.0037	0.032	0.020	0.002	0.029	0.262
1943	0.062	0.008	0.047	0.010	0.000	0.000	0.036	0.045	0.000	0.040	0.043	0.051	0.343
1944	0.000	0.033	0.067	0.011	0.000	0.000	0.027	0.046	0.041	0.036	0.044	0.060	0.364
1945	0.006	0.043	0.030	0.000	0.000	0.000	0.021	0.036	0.033	0.039	0.045	0.060	0.314
1946	0.046	0.047	0.070	0.056	0.000	0.000	0.000	0.032	0.029	0.034	0.049	0.041	0.405
1947	0.036	0.005	0.000	0.000	0.000	0.000	0.022	0.035	0.041	0.032	0.045	0.051	0.268
1948	0.000	0.028	0.063	0.000	0.000	0.020	0.023	0.010	0.025	0.026	0.047	0.037	0.280
1949	0.062	0.005	0.000	0.002	0.000	0.000	0.000	0.018	0.032	0.035	0.032	0.052	0.237
1950	0.071	0.027	0.000	0.031	0.074	0.000	0.000	0.000	0.041	0.036	0.032	0.024	0.350
1951	0.000	0.067	0.029	0.033	0.012	0.028	0.011	0.039	0.029	0.017	0.036	0.054	0.241
1953	0.047	0.000	0.000	0.000	0.000	0.005	0.000	0.032	0.034	0.040	0.023	0.051	0.238
1954	0.033	0.000	0.000	0.000	0.000	0.000	0.000	0.020	0.021	0.031	0.049	0.049	0.203
1955	0.005	0.000	0.000	0.020	0.000	0.000	0.028	0.010	0.013	0.037	0.041	0.000	0.153
1956	0.047	0.036	0.020	0.036	0.000	0.000	0.000	0.016	0.022	0.000	0.019	0.030	0.226
1957	0.000	0.035	0.050	0.000	0.014	0.008	0.000	0.045	0.038	0.039	0.049	0.000	0.278
1958	0.034	0.031	0.000	0.000	0.000	0.011	0.043	0.044	0.039	0.020	0.048	0.044	0.314
1959	0.032	0.000	0.000	0.061	0.000	0.009	0.000	0.027	0.016	0.039	0.042	0.040	0.267
1960	0.063	0.000	0.000	0.055	0.000	0.000	0.000	0.034	0.015	0.011	0.022	0.040	0.434
1961	0.055	0.050	0.050	0.014	0.057	0.033	0.000	0.031	0.001	0.023	0.044	0.052	0.334
1963	0.042	0.032	0.030	0.041	0.031	0.056	0.019	0.039	0.041	0.040	0.048	0.047	0.465
1964	0.004	0.038	0.000	0.000	0.042	0.046	0.007	0.042	0.037	0.038	0.039	0.031	0.324
1965	0.059	0.016	0.059	0.000	0.000	0.045	0.032	0.045	0,035	0.033	0.042	0.026	0.391
1966	0.018	0.037	0.000	0.000	0.000	0.000	0.000	0.037	0.039	0,025	0.046	0.059	0.262
1967	0.033	0.000	0.049	0.070	0,012	0.000	0.000	0.009	0.011	0.026	0.038	0.056	0.302
1968	0.036	0.000	0.000	0.000	0.040	0.000	0.000	0.041	0.030	0.033	0.044	0.039	0.264
1969	0.000	0.048	0.000	0.047	0.011	0.048	0.035	0.026	0.027	0.019	0.047	0.045	0.354
1970	0.025	0.008	0.022	0.000	0.010	0.047	0.000	0.009	0.029	0.040	0.048	0.044	0.183
1972	0.000	0.012	0.078	0.026	0.019	0.000	0.000	0.035	0.037	0.019	0.043	0.000	0.268
1973	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.030	0.039	0.022	0.037	0.002	0.131
1974	0.052	0.000	0,000	0.000	0.000	0.000	0.009	0.023	0.025	0.039	0.040	0.052	0.240
1975	0.046	0.038	0.000	0.000	0.000	0.000	0.000	0.000	0.035	0,040	0.044	0.052	0.255
1976	0.039	0.000	0.060	0.000	0.000	0.000	0.004	0.031	0.041	0.040	0.028	0.000	0.243
1977	0.047	0.035	0.000	0.000	0.000	0.000	0.015	0.038	0.041	0.029	0.044	0.041	0.291
1978	0.051	0.000	0.041	0.000	0.006	0.000	0.021	0.017	0.040	0.034	0.000	0.037	0.243
1980	0.000	0.000	0.000	0.000	0.000	0.000	0.012	0.033	0.041	0.039	0.014	0.033	0.199
1981	0.009	0.000	0.023	0.019	0.056	0.029	0.000	0.000	0.041	0.034	0.046	0.042	0.299
1982	0.028	0.023	0.045	0.036	0.047	0.005	0.035	0.043	0.027	0.039	0.014	0.057	0.400
1983	0.011	0.021	0.039	0.062	0.021	0.000	0.011	0.045	0.037	0.000	0.032	0.037	0.317
1984	0.008	0.000	0.083	0.000	0.000	0.000	0.043	0.000	0.009	0.037	0.047	0.023	0.251
1985	0.008	0.055	0.026	0.032	0.000	0.009	0.000	0.028	0.033	0.039	0.035	0.048	0.312
1986	0.004	0.000	0.023	0.043	0.000	0.009	0.034	0.030	0.020	0.040	0.032	0.000	0.234
1987	0.029	0.022	0.000	0.015	0.000	0.032	0.009	0.036	0.015	0.036	0.036	0.053	0.339
1989	0.017	0.000	0.002	0.000	0.000	0.000	0.003	0.035	0.038	0.032	0.043	0,055	0.225
1990	0.025	0.020	0.000	0.000	0.000	0.000	0.044	0.035	0.013	0.040	0.047	0.040	0.264
1991	0.067	0.032	0.073	0.065	0.056	0.019	0.043	0.046	0.033	0.039	0.043	0.055	0.572
1992	0.055	0.051	0.000	0.066	0.008	0.000	0.028	0.035	0.033	0.029	0.041	0.052	0.398
1993	0.040	0.000	0.000	0.048	0.000	0.033	0.034	0.045	0.041	0.039	0.038	0.055	0.373
1994	0.004	0.057	0.013	0.023	0.000	0.000	0.000	0.012	0.040	0.038	0.035	0.055	0.277
1995	0.043	0.000	0.000	0.000	0.000	0.003	0.007	0.000	0.022	0.003	0.006	0.052	0.136
1996	0.028	0.004	0.038	0.000	0.000	0.000	0.014	0.033	0.041	0.028	0.047	0.000	0.342
1008	0.025	0.000	0.000	0.000	0.000	0.000	0.000	0.008	0.030	0.022	0.043	0.050	0.158
1999	0.046	0.000	0.000	0.000	0.000	0.000	0,030	0.025	0.020	0.020	0.028	0.040	0.210
2000	0.007	0.025	0.000	0.076	0.000	0,000	0.024	0.014	0.036	0.031	0.046	0.048	0.307
2001	0.003	0.000	0.000	0.026	0.023	0.048	0.026	0.044	0.011	0.037	0.039	0.040	0.295
2002	0.024	0.074	0.041	0.042	0.014	0.030	0.045	0.041	0.004	0.036	0.049	0.036	0.436
2003	0.039	0.039	0.070	0.034	0.000	0.000	0.000	0.044	0.032	0.029	0.039	0.047	0.373
2004	0.023	0.051	0.000	0.003	0.061	0.007	0.000	0.035	0.032	0.039	0.040	0.040	0.330
2005	0.059	0.008	0.003	0.000	0.000	0.000	0.030	0.025	0.020	0.020	0.028	0.040	0.235
Average	0 023	0 022	0 071	0.019	0.012	0.010	0.015	0.030	0.030	0.079	0.038	0.039	0,294
HARIARE	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average						(199 8)	100	1000	1944 (1947)	0.4217	800°		
(m3/s)	0.012	0.009	0.008	0.007	0.005	0.004	0.006	0.011	0.011	0.011	0.014	0.015	0.009

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	I	381B30								
Year	Oct	Nov	Dec	lan	Monthly i Feb	rrigation de Mar	mand in 10 Apr	^6m^3 Mav	lun	Jul	Aug	Sep	Total
1925	0.204	0.458	0.522	0.451	0.000	0.000	0.404	0.341	0.336	0.007	0.393	0.350	3.826
1926	0.695	0.420	0.490	0.000	0.364	0.094	0.204	0.266	0.298	0.275	0.368	0.463	3.937
1927	0.125	0.481	0.501	0.000	0.293	0.238	0.157	0.313	0.353	0.275	0.275	0.457	3.468
1928	0.633	0.395	0.426	0.177	0.000	0.000	0.169	0.372	0.181	0.259	0.279	0.367	3.257
1929	0.417	0.397	0.000	0.346	0.050	0.000	0.221	0.362	0.355	0.271	0.392	0.454	2.846
1930	0.534	0.100	0.629	0.126	0.221	0.017	0.246	0.193	0.329	0.347	0.423	0.472	3.637
1932	0.444	0.659	0.106	0.000	0.196	0.274	0.249	0.362	0.351	0.333	0.359	0.527	3.859
1933	0.507	0.000	0.302	0.000	0.054	0.000	0.221	0.342	0.239	0.304	0.373	0.463	2.805
1934	0.508	0.007	0.000	0.178	0.208	0.247	0.345	0.207	0.336	0.317	0.411	0.431	3.195
1935	0.510	0,777	0.530	0.261	0.000	0.000	0.114	0.106	0.242	0.249	0.379	0.361	3.528
1936	0.299	0.000	0.073	0.000	0.000	0.044	0.284	0.381	0.345	0.286	0.385	0.342	2.437
1938	0.173	0.408	0.000	0.108	0.000	0.000	0.210	0.171	0.195	0.059	0.337	0.262	1.922
1939	0.514	0.000	0.000	0.506	0.110	0.000	0.000	0.323	0.113	0.338	0.286	0.189	2.379
1940	0.579	0.331	0.000	0.493	0.326	0.423	0.031	0.382	0.344	0.330	0.337	0.525	4.101
1941	0.453	0.598	0.533	0.366	0.573	0.000	0.286	0.100	0.294	0.247	0.225	0.135	3.810
1942	0.220	0.465	0.016	0.677	0.335	0.000	0.000	0.327	0.353	0.098	0.088	0.324	2.902
1943	0.619	0.214	0.513	0.225	0.000	0.039	0.329	0.388	0.053	0,347	0.380	0.484	3,5657
1945	0.208	0.481	0.384	0,000	0.000	0.029	0.223	0.324	0.300	0.339	0.395	0.546	3.228
1946	0.505	0.509	0.681	0.571	0.000	0.071	0.000	0.297	0.272	0.307	0.423	0.411	4.046
1947	0.431	0.191	0.000	0.100	0.084	0.000	0.232	0.315	0.353	0.293	0.396	0.484	2.878
1948	0.058	0.367	0.631	0.000	0.000	0.250	0.239	0.134	0.240	0.250	0.409	0.383	2.963
1949	0.615	0.193	0.094	0.158	0.000	0.000	0.000	0.191	0.292	0.310	0.298	0.489	2.639
1950	0.680	0.364	0.000	0.381	0.668	0.000	0.032	0.000	0.353	0.323	0.299	0.286	3.385
1951	0.511	0.087	0.000	0.000	0.000	0.000	0.000	0.337	0.353	0.237	0.333	0.505	2.363
1953	0.554	0.111	0.000	0.000	0.000	0.135	0.007	0.294	0.307	0.347	0.236	0.480	2.471
1954	0.405	0.063	0.064	0.000	0,000	0.000	0.000	0.211	0.210	0.284	0,423	0.468	2.128
1955	0.198	0.000	0.000	0.300	0.000	0.000	0.269	0,134	0.153	0.326	0.365	0.077	1.821
1956	0.511	0.427	0.301	0.422	0.000	0.000	0.000	0.183	0.219	0.010	0.207	0.330	2.610
1957	0.042	0.420	0.555	0.141	0.226	0.160	0.000	0.385	0.334	0.343	0.425	0.000	3.135
1959	0.396	0.000	0.044	0.608	0.000	0.163	0.000	0.261	0.180	0.340	0.376	0.405	2.772
1960	0.621	0.000	0.000	0.564	0.000	0.000	0.000	0.309	0.170	0.143	0.228	0.400	2.434
1961	0.566	0.531	0.382	0.250	0.394	0.356	0.043	0.287	0.353	0.335	0.423	0.514	4,434
1962	0.671	0.014	0.000	0.380	0.507	0.344	0.099	0.207	0.098	0.230	0.388	0.487	3.426
1963	0.471	0.399	0.379	0.462	0.349	0.510	0.207	0.347	0.353	0.347	0.412	0.453	4.689
1964	0.190	0.446	0.000	0.000	0.457	0.435	0.119	0.384	0.324	0.298	0.376	0.301	3.873
1966	0.297	0.435	0.073	0.101	0.000	0.000	0.000	0.332	0.340	0.242	0.404	0.539	2.764
1967	0.403	0.140	0.530	0.676	0.207	0.000	0.008	0.126	0.137	0.249	0.342	0.515	3.333
1968	0.426	0.094	0.123	0.056	0.422	0.000	0.000	0.357	0.277	0.301	0.389	0.393	2.839
1969	0.000	0.521	0.078	0.506	0.204	0.452	0.321	0.251	0.253	0.201	0.409	0.440	3.635
1970	0.350	0.220	0.324	0.000	0.191	0.446	0.000	0.132	0.268	0.347	0.415	0.431	3.124
1971	0.016	0.108	0.182	0.000	0.000	0.000	0.057	0.170	0.333	0.321	0.378	0.000	2.987
1973	0.108	0.160	0.000	0.000	0.000	0.000	0.032	0.282	0.341	0.222	0.335	0.123	1.603
1974	0.544	0.102	0.100	0.000	0.000	0.000	0.133	0.229	0.241	0.341	0.360	0.489	2.538
1975	0.505	0.449	0.000	0,000	0,000	0.000	0.054	0.000	0.309	0.346	0,385	0.487	2.534
1976	0.453	0.149	0.609	0.000	0.000	0.000	0.101	0.284	0.353	0,347	0.276	0.065	2.638
1977	0.511	0.426	0.000	0,000	0.000	0.000	0.179	0.337	0.352	0.270	0.589	0.410	2.874
1978	0.160	0.182	0.058	0.023	0.000	0.078	0.263	0.355	0.353	0.306	0.237	0.149	2.165
1980	0.313	0.000	0,190	0.000	0.000	0.000	0.160	0.302	0.353	0.342	0.171	0.354	2.185
1981	0.226	0.078	0.329	0.289	0.534	0.314	0.000	0.029	0.353	0.307	0.399	0.419	3.276
1982	0.370	0.329	0.500	0.425	0.473	0.138	0.323	0.375	0.257	0.338	0.171	0.525	4.224
1983	0.240	0.317	0.455	0.618	0.280	0.000	0.148	0.389	0.328	0.000	0.300	0.384	3.459
1985	0.223	0.570	0.353	0.388	0.000	0.165	0.000	0.264	0.297	0.328	0.325	0.457	3.482
1986	0.190	0.074	0.326	0.477	0.000	0.167	0.313	0.277	0.203	0.347	0.302	0.000	2.677
1987	0.374	0.326	0.000	0.283	0.000	0.000	0.182	0.374	0.027	0.285	0.265	0.213	2.328
1988	0.000	0.535	0.372	0.486	0.000	0.338	0.133	0.321	0.166	0.318	0.332	0.494	3.495
1989	0.291	0.085	0.162	0.000	0.000	0.000	0.088	0.315	0.332	0.288	0.377	0.513	2.450
1990	0.348	0.311	0.062	0.000	0.000	0.000	0.385	0.316	0.154	0.347	0.411	0.399	2.734
1991	0.564	0.539	0.110	0.641	0.182	0.243	0.272	0.318	0.295	0.270	0.369	0.487	4.054
1993	0.460	0.088	0.000	0.515	0.000	0.346	0.316	0.386	0.353	0.338	0.344	0.506	3.651
1994	0.187	0.584	0.249	0.326	0.010	0.000	0.044	0.150	0.350	0.331	0.326	0.509	3.066
1995	0.478	0.000	0,000	0.000	0.000	0.118	0.120	0.000	0.218	0.080	0.115	0.491	1.622
1996	0.373	0.182	0.446	0.000	0.000	0.000	0.169	0.303	0.352	0.263	0.409	0.080	2.576
1997	0.331	0.082	0.497	0,000	0.478	0.447	0.273	0.394	0.341	0.074	0.386	0.259	3.563
1000 TAAR	0.502	0.108	0.043	0.000	0.000	0.000	0.291	0.247	0.207	0.202	0.275	0.404	2,279
2000	0.210	0.344	0.095	0.721	0.000	0.074	0.246	0.164	0.322	0.284	0.399	0.458	3.317
2001	0.183	0.000	0.113	0.345	0.292	0.448	0.255	0.377	0.137	0.325	0.352	0.402	3.230
2002	0.336	0.709	0.469	0.465	0.226	0.319	0.396	0.358	0.091	0.320	0.422	0.375	4.488
2003	0.447	0.455	0.686	0.404	0.000	0.000	0.000	0.381	0.292	0.267	0.354	0.454	3.739
2004	0.596	0.539	0.167	0.143	0.569	0.148	0.065	0.315	0.292	0.342	0.356	0.404	2.752
2005	5.550	2.2.20	3.201	5.245	0.000	0.000	0.001			C.L.V.L			
Average	0.376	0.291	0.250	0.224	0.138	0.116	0.156	0.274	0.274	0.270	0.341	0.387	3.102
4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	0.4.40	0.110	0.000	0.00.	0.000	0.042	0.000	0.102	0.100	0 101	0 107	0.140	0.000
(ma/s)	0.140	0.112	0.093	0.084	0.056	0.043	0.060	0.102	0.106	0.101	0.12/	0.149	0.098

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	E	881C01								
Veee	0-1		Dee	law	Monthly in	rigation der	mand in 10	^6m^3	lun.	1.1	Aug	Son	Total
1925	0.204	1.551	1.591	0.517	0.000	0.764	0.918	1.142	1.071	0.434	1.342	1.561	11.930
1926	1.704	1.260	1.711	0.000	0.684	1.271	0.817	0.973	1.070	0.639	1.333	1.578	13.039
1927	0.181	0.800	1.077	0.077	1.345	1.405	0.517	1,131	1.071	1.051	1.085	1.517	11.257
1928	1.485	0.925	1.136	0.260	0.000	0.000	0.775	1.187	0.873	0.906	1.013	1.442	10.001
1929	0.863	0.171	0.392	0.340	0.000	0.494	0.000	1.086	1.005	0.942	1.329	1.372	7.995
1930	1.724	1.262	1.561	1,064	0.632	0.640	0.103	0.684	0.965	1.086	1.342	1.525	11.042
1932	1.316	0.716	0.530	0.000	0.999	1.248	0.833	1.222	1.071	1.086	1.306	1.525	11.852
1933	1.531	0.000	0.782	0.000	0.000	0.401	0.560	1.075	0.842	1.086	1.042	1.277	8.595
1934	1.203	0.661	0.821	0.928	0.760	1.010	0.830	1.127	1.071	1.086	1.342	1.384	12.223
1935	1.498	1.724	1.728	0.395	0.175	0.142	0.743	0.776	0.991	0.874	1.252	1.550	11.847
1936	1.140	0.863	1.112	0.602	0.000	0.382	0.876	1.197	1.050	1.063	1.263	1.265	10.813
1937	1.395	1.453	0.000	0.000	1.515	1.160	0.000	1.105	1.008	1.065	1.301	0.618	10.619
1930	1.178	1.609	0.000	1 235	0.684	0.212	0.012	0.818	0.940	1.086	1.208	0.363	7.532
1940	1.304	0.943	0.463	1.049	1.345	0.888	0.521	1.222	1.071	1.050	1.314	1.545	12.717
1941	1.413	1.318	1.188	0.466	1.359	0.000	0.810	0.790	0.895	0.822	0.667	1.214	10.944
1942	1.161	0.975	0.899	1.351	0.000	0.398	0.000	0.555	1.071	0.377	1.125	1.438	9.351
1943	1.646	0.529	1.571	0.828	0.000	1.060	0.800	1.216	0.743	1.086	1.342	1.532	12.352
1944	0.381	1.453	1.773	0.610	1.230	1.077	0.277	1.181	1.071	0.967	1.298	1.580	12.898
1945	1.066	0.955	0.919	0.000	0.210	1.196	0.674	1.158	0.976	1.006	1.313	1.554	11.007
1940	1.550	1.014	0.477	0.352	0.851	0.000	0.554	1.179	1.067	0.995	1.342	1.540	10.960
1948	0.692	1.112	1.328	0.000	0.243	0.618	0.490	1.078	0.932	0.824	1.306	1.453	10.075
1949	1.640	0.609	0.916	0.185	0.281	1.145	0.000	1.032	1.039	1.075	1.270	1.522	10.715
1950	1.719	1.316	0.000	1.012	1,650	0.046	0.228	0.368	1.071	1.061	1.244	1.172	10.886
1951	0.408	1.509	1.549	0.275	0.267	1.298	0.531	1.152	0,687	0.986	1.320	1.550	11.533
1952	1.024	0.834	0.666	0.617	0.151	0.286	0.000	1.204	1.071	0.695	1.236	1.516	9.301
1953	1.402	0.609	0.477	0.000	0.112	0.960	0.000	0.931	1.035	1.086	1.018	1.488	9.118
1954	1.216	0.428	0.000	1.263	0.000	0.000	0.682	0.742	1.050	0.995	1.334	0.995	8.705
1956	1.316	1.095	1.025	0.000	0,000	0.571	0.066	0.633	0.839	0.785	1.080	1.197	8.605
1957	0.703	1.105	0.120	0.000	0.000	1.321	0.342	1.191	1.015	1.083	1.283	0.842	9.004
1958	1.083	1.230	0.000	0,000	0.294	0.952	0.884	1.070	1.042	0.884	1.329	1.479	10.248
1959	1.341	1.191	0.209	1.252	0.000	0.773	0.000	1.098	0.595	1.064	1.332	1.462	10.316
1960	1.406	0.000	0.000	0.771	0.000	0.354	0.245	1.199	0.334	1.055	1.120	1.538	11 534
1962	1.560	0.027	0.298	1 205	1 185	0.712	0.019	0.613	0.524	1.035	1.342	1.527	10.359
1963	1.197	1.606	0.837	0.270	0.289	1.529	0.681	1.164	1.060	1.086	1.247	1.563	12.527
1964	0.657	0.372	0.427	0.558	0.791	1.227	0.366	1.214	0.899	1.086	1.271	1.350	10.218
1965	1.531	0.854	1.049	0.243	0.000	1.313	0.686	1.178	0.967	1.083	1.251	1.161	11.317
1966	1.067	1.267	0.648	0 160	0.000	0.311	0.000	1.203	0.972	0.962	1.313	1.547	9.450
1967	1.238	0.000	1.259	1.590	0.705	1.140	0.124	0.582	0.891	1.036	1.275	1.555	11.396
1968	1.257	1 199	0.499	1.667	0.529	1 334	0.459	1.124	0.990	0.985	1.330	1.545	12.531
1970	0.928	0.580	0.050	0.000	0.791	1.162	0.029	0.970	0.967	1.086	1.337	1.347	9.248
1971	0.631	0.508	0.561	0.000	0.000	0.000	0.670	0.768	1.057	1.059	1.279	1.526	8.060
1972	0.432	1.057	1.194	1.147	0.977	0.588	0.116	1.065	0.991	0.869	1.324	0.640	10.401
1973	0.026	1.163	0.000	0.000	0.000	0.000	0.112	0.873	1.053	0.878	1.263	0.801	6.168
1974	1.666	0.000	0.534	0.362	0.000	0,600	0.252	0.827	0.987	1.086	1.278	1.562	9,154
1975	1.454	1.214	0.000	0.000	0.000	0.000	0.000	1.204	1.066	1.085	1.518	0.507	7.689
1970	1.093	1.259	0.042	0.000	0.000	0.707	0.564	1.141	1.038	0.840	1.315	1.494	9.493
1978	1.309	0.220	1.371	0.831	0.423	0.075	0.421	1.010	1.023	1.049	0.931	1.480	10.143
1979	0.999	0.774	0.686	0.568	0.000	0.704	0.507	1.172	1.071	1 021	1.204	1.029	9.736
1980	1.140	0.000	1.145	0.000	0.000	0.000	0.842	0.741	1.071	1.036	1.226	1.247	8.448
1981	1.138	0.171	1.096	0.810	0.262	1.667	0.472	0.525	1.071	1.058	1.327	1.554	11.151
1982	1.270	1.428	1.274	0.723	1.587	0.696	0.894	1.074	1.049	1.008	1 1 9 5	1.578	13.442
1983	0.631	0.755	1.507	0.244	0.081	0.068	0.899	0.628	0.953	1.032	1.327	0.118	8.202
1985	0.906	1.608	0.466	1.364	0.318	1.424	0.000	1.156	1.065	1.086	1.139	1.401	11.932
1986	0.886	0.051	0.387	0.993	0.446	1.163	0.658	1.032	1.004	1.086	1.245	1.041	9.992
1987	1.134	1.031	0.000	0.709	0.000	0.318	0.514	1.166	0.447	1.086	0.867	1.297	8.568
1988	0.000	1.366	1.279	1.862	0.255	1.368	0.759	1.164	0.700	1.060	1.332	1.546	12.691
1989	0.746	0.210	0.231	0.175	0.643	0.613	0.561	1.210	1.0/1	1.064	1.335	1.579	9.438
1990	1.188	0.597	1.140	0.000	0.255	0,000	0.940	1,030	0.652	1.086	0.994	1.580	12.439
1992	1.608	0,961	0.000	1.366	0.000	0.806	0.876	1.166	0.945	0.958	1.282	1.580	11.549
1993	1.263	0.096	0.840	0.628	0.998	1.352	0.694	1.207	1.071	1.086	1.267	1.534	12.036
1994	1.462	1.103	1.010	1.061	0.000	0.514	0.101	0.619	1.050	1.083	1.237	1.538	10.776
1995	1.240	0.601	1.200	0.000	0.000	1.278	0.344	0.611	0.965	0.460	1.161	1.477	9.336
1996	1.357	0.645	1.057	0.212	0.325	0.261	0,727	1.095	1.071	1.032	1.342	0.858	9.982
1997	1.056	0.739	1.531	0.006	1.215	1.218	0.714	1.222	1.071	0.944	1.202	1.449	8 172
1000 1339	1,167	0.431	0.017	0.000	0.588	0.000	0.189	1.050	1,009	1.086	1.342	1.492	8.371
2000	1.147	0.588	0.833	1.616	0.000	0.461	0.216	1.028	1.022	0.989	1.337	1.433	10.671
2001	1.463	0.000	0.000	0.790	1.547	1.481	0.686	1.023	0.610	1.086	1.268	1.462	11.417
2002	1.067	1.530	1.274	1.221	0.904	0.441	0.861	1.181	0.903	1.082	1.326	1.404	13.193
2003	0.944	1.524	0.000	0.723	0.423	0.000	0.884	1.222	0.896	1.032	1.237	1.493	10.378
2004	1.320	1.498	0.453	1.269	1.260	1.300	0.810	1.182	1.038	1.045	1.104	1.580	13.859
2005	1.082	0.001	0.482	0.023	0.355	0.580	0.717	0.987	0.640	0.000	1.104	1.341	3.300
Average	1.159	0.839	0.744	0.560	0.454	0.667	0.484	1.012	0.933	0.962	1.241	1.358	10.424
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average													
(m3/s)	0.433	0.324	0.278	0.209	0.186	0.249	0.187	0.378	0.360	0.359	0.463	0.524	0.330

FIXED AREA IF	RRIGATION	DEMAND T	IME SERIES	B	81C10			NC 47					
Vear	Oct	Nov	Dec	lan	Monthly in Feb	rigation der Mar	mand in 10 [,] Apr	°6m^3 Mav	lun	Inl	Aug	Sen	Total
1925	0.204	2.407	2.714	1.093	0.000	0.827	1.621	1.367	1.277	0.325	1.548	1.872	16.360
1926	2.290	1.978	2.892	0.210	1.057	1.569	1.463	1.117	1.275	0.625	1.535	1.898	17.909
1927	0.077	1.308	1.961	0.482	2.026	1.767	1.000	1.352	1.277	1.234	1.170	1.807	15.460
1928	1.965	1.489	2.048	0.733	0.000	0.000	1.397	1.434	0.983	1.019	1.064	1.695	13.827
1929	1.051	0.417	0.987	0.845	0.000	0.439	0.000	1.285	1.179	1.071	1.528	1.592	10.394
1930	1 264	0.946	2 670	1.297	0.688	0.964	0.733	0.691	1.121	1.285	1.548	1.863	15.078
1932	1.715	1.188	1.181	0.000	1.516	1.535	1.487	1.487	1.277	1.285	1.494	1.818	15.983
1933	2.033	0.000	1.538	0.121	0.000	0.305	1.065	1.268	0.937	1.285	1.107	1.450	11.110
1934	1.548	1.108	1.594	1.680	1.168	1.185	1.483	1.345	1.277	1.285	1.548	1.609	16.830
1935	1.984	2.665	2.917	0.922	0.331	0.000	1.347	0.827	1.158	0.971	1.416	1.856	16.394
1936	1.455	1.399	2.012	1.214	0.000	0.278	1.554	1.449	1.245	1.252	1.432	1.432	14.723
1937	1.831	2,262	0.113	0.000	2.278	1.405	0.000	1.314	1.183	1.254	1.48/	0.484	13.510
1938	2 2 2 2 0	2.493	0.101	2 1 2 7	1.057	0.039	0.000	0.888	0.000	1 285	1.439	0.117	9 901
1940	1.697	1.514	1.086	1.856	2.026	1.008	1.006	1.487	1.277	1.232	1.507	1.849	17.546
1941	1.858	2.064	2.124	1.022	2.047	0.000	1.452	0.847	1.016	0.894	0.561	1.357	15.241
1942	1.487	1.561	1.705	2.297	0.025	0.302	0.000	0.503	1.277	0.241	1.229	1.690	12.317
1943	2.204	0.921	2.684	1.536	0.000	1.258	1.436	1.477	0.792	1.285	1.548	1.830	16.970
1944	0.360	2.262	2.984	1.225	1.856	1.283	0.634	1.426	1.277	1.108	1.483	1.901	17.799
1945	1.348	1.532	1.734	0.000	0.381	1.459	1.240	1.392	1.136	1.167	1.505	1.833	14.724
1946	2.052	2.062	2.960	0.762	1.000	1.025	1.055	1.328	1.270	1.1/2	1.548	1.525	15 295
1948	0.803	1 761	2 327	0.802	0.428	0.617	0.957	1.422	1.070	0.897	1 495	1.711	13.340
1949	2.195	1.034	1.730	0.630	0.482	1.383	0.000	1.205	1.229	1.269	1.441	1.815	14.414
1950	2.314	2.060	0,385	1.801	2.479	0.000	0.561	0.230	1.277	1.248	1.404	1.294	15.054
1951	0.398	2.346	2.651	0.755	0.462	1.609	1.021	1.383	0.709	1.137	1.516	1.857	15.842
1952	1.285	1.357	1.373	1.235	0.298	0.142	0.000	1.460	1.277	0.708	1.392	1.805	12.333
1953	1.842	1.034	1.106	0.000	0.244	1.112	0.068	1.055	1.223	1.285	1.072	1.763	11.804
1954	2.042	1.878	0.675	0.000	0.000	0.150	1.059	1.396	0.693	1.147	1.458	1.745	12.243
1955	1.568	0.776	1 007	2.16/	0.000	0.000	1.253	0.777	1.246	0.840	1,550	1.034	11.004
1950	0.819	1.750	0.612	0.209	0.000	1.642	0.320	1.440	1 193	1.280	1.462	0.810	12.295
1958	1.372	1.934	0.000	0.000	0.500	1.100	1.567	1.260	1.234	0.986	1.529	1.751	13.234
1959	1.751	1.876	0.734	2.152	0.000	0.840	0.000	1.302	0.573	1.252	1.533	1.725	13.739
1960	1.847	0.169	0.000	1.454	0.000	0.240	0.587	1.452	0.191	1.087	1.222	1.838	10.087
1961	2.076	1.835	2.105	0.756	1.013	0.752	0.251	1.194	1.277	1.255	1.548	1.739	15.802
1962	2.208	0.217	0.856	2.083	1.790	0.786	0.546	0.588	0.470	1.210	1.548	1.822	14.124
1963	1.539	2.489	1.616	0.748	0.492	1.952	1.251	1.400	1.260	1.285	1.408	1.875	17.315
1964	0.753	0.698	1.037	1.151	1.212	1.503	0.770	1.475	1.021	1,285	1.444	1.558	13.908
1965	1.249	1.386	1.922	0.711	0.000	1.632	0.150	1.422	1.122	1.280	1.414	1.279	12.428
1967	1.546	0.118	2 2 2 2 7	2 649	1.088	1 377	0.139	0.542	1.010	1 211	1 449	1.863	15.541
1968	1.628	0.060	1.136	1.496	1.804	0.000	0.880	1.341	1.157	1.262	1.531	1.442	13.736
1969	0.452	1.888	1.489	2.762	0.834	1.662	1.510	1.221	0.958	1.135	1.533	1.849	17.294
1970	1.145	0.993	0.517	0.000	1.213	1.409	0.265	1.113	1.122	1.285	1.540	1.554	12.157
1971	0.716	0.890	1.224	0.000	0.000	0.000	1.235	0.815	1.256	1.245	1.456	1.821	10.657
1972	0.431	1.681	2.131	1.997	1.484	0.574	0.394	1.254	1.159	0.963	1.521	0.516	14.106
1973	0.000	1.835	0.000	0.000	0.000	0.000	0.388	0.969	1.249	1.205	1.451	1 974	7.600
1974	1 918	1 911	1,100	0,876	0.000	0.590	0.093	0.901	1.152	1.285	1.433	1.811	9.621
1976	1.605	0.721	2.002	0.000	0.000	0.000	1.416	1.460	1.269	1.281	1.208	0.324	11.287
1977	1.386	1.976	0.507	0.000	0.000	0.745	1.071	1.367	1,228	0.921	1.508	1.772	12.481
1978	1.705	0.485	2.391	1.541	0.683	0.000	0.853	1.172	1.206	1.230	0.945	1.751	13.961
1979	1.250	1.270	1.402	1.165	0.000	0.741	0.983	1.413	1.277	1.188	1,345	1.083	13.117
1980	1.455	0.000	2.060	0.000	0.000	0.000	1.502	0.775	1.277	1.210	1.377	1.406	11.063
1981	1.452	0.416	1.990	1.511	0.454	2.158	0.931	0.459	1.277	1.243	1.526	1.862	15.279
1982	1.646	1.225	2.248	1.386	2.385	0.729	1.583	1.208	1.131	0.000	1 331	1,898	16 300
1984	0.716	1.083	2.595	0.711	0.201	0.000	1.591	0.609	1.102	1.205	1.525	0.000	11.437
1985	1.113	2.491	1.091	2.316	0.534	1.795	0.000	1.388	1.267	1.285	1.250	1.633	16.164
1986	1.084	0.251	0.980	1.774	0.716	1.411	1.215	1.205	1.177	1.285	1.405	1.101	13.604
1987	1.447	1.643	0.000	1,365	0.000	0.188	0.994	1.403	0.357	1.285	0.851	1.479	11.012
1988	0.000	2.133	2.256	3.053	0.445	1.713	1.373	1.400	0.728	1.246	1.532	1.850	17.730
1989	0.881	0.470	0.764	0.617	0.999	0.610	1.067	1.470	1.277	1.253	1.537	1.899	12.843
1990	1.527	1.017	1.511	0.000	0.442	0.000	1.655	1.211	0.953	1.285	1.548	1.901	13.050
1991	2.321	1.432	2.055	2.785	1.150	0.415	1.505	1.407	1.000	1.265	1.057	1 901	15 621
1992	1,637	0,313	1,620	1.251	1,514	1,689	1,272	1.464	1.277	1.285	1,437	1.832	16.592
1994	1.931	1.748	1.865	1.873	0.000	0.467	0.372	0.596	1.245	1.281	1.393	1.838	14.607
1995	1.602	1.023	2.141	0.000	0.000	1.580	0.736	0.584	1.119	0.363	1.281	1.748	12.176
1996	1.775	1.086	1.933	0.667	0.544	0.108	1.323	1.299	1.277	1.206	1.548	0.832	13.595
1997	1.332	1.221	2.625	0.385	1.833	1.491	1.302	1.487	1.277	1.074	1.342	1.706	17.075
1998	1.147	1.559	0.473	0.000	0.066	0.000	1.107	1.258	1.101	0.696	1.534	1.896	10.836
1999	1.495	0.781	0.472	0.000	4.186	0.000	0.504	1.231	1.185	1.285	1.548	1.770	14.457
2000	1 933	0.000	1.011	2.088	2 326	1 880	1 260	1 100	0.595	1 285	1.541	1.081	14.4/1
2001	1 349	2 376	2.749	2.106	1.377	0.363	1.530	1.425	1.027	1.279	1.525	1.638	18.244
2003	1.169	2.367	0.102	1.386	0.683	0.000	1.567	1.487	1.018	1.205	1.393	1.772	14.147
2004	1.721	2.329	1.072	2.176	1.900	1.611	1.451	1.427	1.227	1.225	1.197	1.901	19.239
2005	2.258	1.023	1.113	1.243	0.586	0.276	1.307	1.138	0.935	0.943	1.197	1.545	13.564
				100-100-100-100-100-100-100-100-100-100			Quality of the second		(april a constant				020000000000000000000000000000000000000
Average	1.494	1.359	1.436	1.076	0.746	0.750	0.928	1.178	1.073	1.103	1.400	1.575	14.132
Average	31	30	31	31	28.25	31	30	31	30	31	51	30	305.25
(m3/s)	0.558	0.524	0.536	0.402	0.306	0.280	0.358	0.440	0.414	0.412	0.523	0.608	0.448

FIXED AREA I	RRIGATION	DEMAND T	IME SERIES	l	B81C15		11.40						
Vear	Oct	Nov	Dec	lan	Monthly in Feb	rigation der Mar	mand in 10 Anr	^6m^3 May	lun	lui	Aug	Sen	Total
1925	0.204	1.095	1.168	0.341	0.000	0.448	0.750	0.742	0.676	0.181	0.822	1.018	7.904
1926	1.167	0.875	1.259	0.000	0.431	0.830	0.671	0.614	0.675	0.335	0.816	1.031	8.703
1927	0.024	0.529	0.780	0.021	0.930	0.932	0.438	0.734	0.676	0.646	0.629	0.984	7.323
1928	1.000	0.623	0.825	0.153	0.000	0.000	0.638	0.776	0.526	0.536	0.575	0.927	6.579
1929	0.530	0.065	0.273	0.212	0.000	0.247	0.000	0.700	0.626	0.121	0.813	0.874	4.902
1930	0.640	0.876	1 145	0.748	0.392	0.555	0.121	0.395	0.619	0.672	0.805	1.013	7.138
1932	0.872	0.467	0.375	0.000	0.668	0.813	0.683	0.803	0.676	0.672	0.795	0.990	7.813
1933	1.035	0.000	0.560	0.000	0.000	0.177	0.471	0.691	0.503	0.672	0.597	0.801	5.508
1934	0.786	0.425	0.590	0.647	0.488	0.633	0.681	0.731	0.676	0.672	0.822	0.883	8.033
1935	1.010	1.228	1.272	0.252	0.054	0.000	0.613	0.465	0.616	0.512	0.755	1.009	7.784
1936	0.738	0.576	0.807	0.404	0.000	0.163	0.716	0.784	0.660	0.655	0.763	0.792	7.059
1937	0.931	1.021	0.000	0.000	0.000	0.746	0.667	0.715	0.628	0.856	0.751	0.804	5.945
1939	1.131	0.000	0.151	0.877	0.431	0.000	0.000	0.505	0.012	0,672	0,765	0.113	4.657
1940	0.862	0.636	0.325	0.738	0.930	0.541	0.441	0.803	0.676	0.645	0.802	1.006	8.405
1941	0.945	0.919	0.864	0.304	0.941	0.000	0.665	0.475	0.543	0.473	0.317	0.754	7.200
1942	0.754	0.660	0.648	0.965	0.000	0.176	0.000	0.298	0.676	0.138	0.659	0.924	5.898
1943	1.122	0.328	1.153	0.572	0.000	0.670	0.657	0.798	0.428	0.672	0.822	0.996	8.219
1944	0.171	1.021	1.307	0.410	0.843	0.683	0.253	0.772	0.676	0.582	0.789	1.032	8.539
1945	1.050	0.045	1.294	0.000	0.075	0.775	0.333	0.733	0.004	0.615	0.800	0.840	7.765
1947	1.088	0.689	0.335	0.221	0.556	0.000	0.466	0.770	0.673	0.604	0.815	1.002	7.219
1948	0.401	0.763	0.969	0.000	0.104	0.339	0.417	0.694	0.571	0.474	0.796	0.935	6.462
1949	1.118	0.387	0,660	0.099	0.132	0.735	0.000	0.659	0.652	0.664	0.768	0.988	6.862
1950	1.179	0.917	0.000	0.709	1.162	0.000	0.216	0.158	0.676	0.653	0.749	0.721	7.141
1951	0.191	1.064	1.136	0.164	0.122	0.851	0.448	0.750	0.386	0.596	0.806	1.010	7.524
1952	0.650	0.555	0.475	0.415	0.036	0.092	0.000	0.790	0.676	0.377	0.743	0.984	5.793
1954	1 040	0.824	0.109	0.000	0.000	0.096	0.468	0.757	0.378	0.602	0.776	0.952	6.001
1955	0.796	0.253	0.000	0.898	0.000	0.000	0.565	0.439	0.660	0.603	0.817	0.587	5.619
1956	0.871	0.750	0.742	0.000	0.000	0.304	0.093	0.357	0.500	0.445	0.626	0.740	5.427
1957	0.410	0.758	0.076	0.000	0.000	0.868	0.303	0.779	0.633	0.670	0.778	0.472	5.748
1958	0.695	0.852	0.000	0.000	0.142	0.589	0.723	0.687	0.654	0.520	0.813	0.955	6.631
1959	0.890	0.822	0.140	0.890	0.000	0.455	0.000	0.709	0.316	0.655	0.815	1.000	6.635
1960	1.057	0.801	0.854	0.165	0.408	0.409	0.057	0.653	0.676	0.657	0.822	0.950	7.511
1962	1.125	0.000	0.204	0.855	0.809	0.427	0.208	0.342	0.263	0.634	0.822	0.992	6.681
1963	0.781	1.138	0.601	0.161	0.137	1.027	0.564	0.759	0.668	0.672	0.751	1.019	8.278
1964	0.376	0.212	0.299	0.372	0.511	0.797	0.322	0.797	0.546	0.672	0.769	0.857	6.529
1965	1.035	0.570	0.760	0.141	0.000	0.862	0.568	0.770	0.597	0.670	0.754	0.713	7.440
1966	0.683	0.880	0.461	0.081	0.000	0.111	0.011	0.789	0.601	0.578	0.800	1.007	7 469
1967	0.813	0.000	0.351	0.551	0.816	0.000	0.377	0.728	0.615	0.661	0.814	0.797	6.537
1969	0.219	0.829	0.535	1.204	0.315	0.878	0.694	0.667	0.513	0.596	0.815	1.006	8.272
1970	0.578	0.366	0.026	0.000	0.512	0.748	0.065	0.612	0.597	0.672	0.819	0.854	5.848
1971	0.356	0.312	0.397	0.000	0.000	0.000	0.556	0.459	0.666	0,652	0.775	0.991	5.164
1972	0.208	0.722	0.868	0.810	0.651	0.317	0.130	0.684	0.616	0.508	0.809	0.320	6.645
1973	0.000	0.801	0.000	0.000	0.000	0.000	0.127	0.558	0.662	0.515	0.763	1.018	5.848
1974	0.976	0.840	0.000	0.000	0.000	0.000	0.000	0.000	0.581	0.672	0,804	0,986	4.860
1976	0.815	0.224	0.801	0.000	0.000	0.000	0.647	0.790	0.672	0.670	0.649	0.221	5.489
1977	0.703	0.874	0.020	0.000	0.000	0.406	0.474	0.742	0.651	0.486	0.802	0.966	6.124
1978	0.866	0.100	1.002	0.575	0.237	0.000	0.364	0.642	0.640	0.644	0.514	0.956	6.539
1979	0.632	0.510	0.490	0.379	0.000	0.403	0,430	0.765	0.676	0.623	0.719	0.613	6.239
1980	0.738	0.000	0.831	0.000	0.000	1 1 3 2	0.690	0.458	0.676	0.651	0.755	1.012	7 734
1982	0.836	1.002	0.928	0.494	1,114	0.397	0.731	0.691	0.602	0.614	0.518	1.031	8.958
1983	0.902	0.495	1.104	1.006	0.814	0.226	0.351	0.803	0.659	0.000	0.712	0.688	7.760
1984	0.356	0.412	1.158	0.141	0.000	0.000	0.735	0.353	0.587	0.631	0.811	0.000	5.185
1985	0.562	1.139	0.328	0.974	0.159	0.946	0.000	0.753	0.671	0.672	0.670	0.895	7.770
1986	0.547	0.000	0.269	0.695	0.254	0.749	0.546	0.659	0.626	0.672	0.750	0.622	6.388
1987	0.000	0.955	0.000	1.353	0.113	0.904	0.626	0.759	0.205	0.652	0.815	1.006	8.510
1989	0.442	0.093	0.156	0.092	0.401	0.335	0.472	0.794	0.676	0.656	0,817	1.031	5.965
1990	0.775	0.378	0.547	0.000	0.111	0.000	0.767	0.662	0.511	0,672	0.822	1.032	6.278
1991	1.182	0.593	0.828	0.700	0.482	0.233	0.722	0.803	0.393	0.672	0.561	1.032	8.202
1992	1.094	0.649	0.000	0.976	0.000	0.480	0.717	0.761	0.581	0.576	0,777	1.032	7.642
1993	0.831	0.010	0.603	0.424	0.667	0.892	0.575	0.792	0.676	0.672	0.766	0.997	7.906
1994	0.982	0.750	0.750	0.746	0.000	0.201	0,119	0.340	0.660	0.870	0.745	0.954	5 984
1995	0,902	0.414	0.765	0.118	0.164	0.074	0.600	0.707	0.676	0.632	0.822	0.484	6.359
1997	0.675	0.484	1.122	0.000	0.831	0.790	0.590	0.803	0.676	0.565	0.717	0.932	8.186
1998	0.579	0.659	0.002	0.000	0.000	0.000	0.492	0.686	0.586	0.371	0.815	1.029	5.221
1999	0.758	0.255	0.002	0.000	1.473	0.000	0.187	0.672	0.629	0.672	0.822	0.965	6.437
2000	0.743	0.371	0.598	1.166	0.000	0.222	0.207	0.656	0.639	0.599	0.819	0.920	6.941
2001	0.983	0.000	0.000	0.544	1.084	0.990	0.569	0.652	0.328	0.672	0.767	0.942	7.530
2002	0.590	1.080	0.000	0.494	0.237	0.000	0.703	0.803	0.545	0.631	0.744	0.966	6.807
2004	0.875	1.056	0.318	0.902	0.865	0.852	0.665	0.773	0.651	0.641	0.643	1.032	9.274
2005	1.150	0.381	0.339	0.420	0.186	0.162	0.593	0.625	0.502	0.498	0.643	0.850	6.348
		1 defender of	1.12.05.05.05.05	2022/22/2010/0000	10000000		10 LINE -	120000000	252000200		100000000	200000000	2010/01/20
Average	0.759	0.568	0.538	0.387	0.304	0.403	0.408	0.644	0.572	0.579	0.747	0.864	6.779
Average	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
(m3/s)	0.283	0.219	0.201	0.144	0.125	0.150	0.157	0.241	0.221	0.216	0.279	0,333	0.215

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	E	81E01								
	0-00	-			Monthly in	rigation der	mand in 10 ⁴	\6m^3	36 NoV/2		111 4 80 900 -		
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr 2 710	May	Jun	Jul 1 591	Aug	Sep	Total
1925	4 798	3 986	4.007	2.545	2 433	3 622	2.719	2 964	3.084	2 059	3 704	4.103	39,225
1927	1.192	2.896	3.646	1.258	3.989	3.934	1.787	3.332	3.087	3.016	3.134	4.062	35.332
1928	4.293	3.195	3.788	1.713	0.000	0.000	2.386	3.460	2.627	2.680	2.966	3.889	30.999
1929	2.835	1.371	1.991	1.912	0.553	1.783	0.000	3.227	2.934	2.763	3.695	3.728	26.793
1930	4.846	3.990	0.000	3.657	2.310	2.134	0.815	3.542	2.844	1.393	3.725	4.080	33.335
1931	3.181	2.289	4.787	2.692	1.816	2.653	1.376	2.289	2.910	3.096	3.671	4.149	34.909
1932	3.901	2.697	2.331	0.000	3.179	3.568	2.520	3.542	3.087	3,096	3.641	4.080	35.642
1933	4.399	0.000	2.941	0.580	0,583	1.558	1.886	3.201	2.556	3.096	3.034	3.507	27.341
1934	3,860	5 228	3 761	0.000	0.020	4.462	2.779	2.772	3.087	2 5 3 3	3.725	2 289	39.200
1936	4.887	3.182	4.208	0.712	0.000	1.779	2.070	3.542	3.087	3,096	3.725	3.779	34.068
1937	4.083	4.435	0.359	0.000	4.383	3.362	0.000	3.272	2.940	3.047	3.630	1.959	31.471
1938	3.578	4.798	0.336	2.329	0.000	1.101	2.473	2.603	2.784	2.085	3.555	3.541	29.183
1939	2.300	4.928	0.000	5.438	3.393	0.000	1.890	1.386	0.519	3.096	3.725	3.372	30.047
1940	3.236	1.208	1.342	3.085	4.764	1.704	0.000	3.084	2.638	2.647	3.264	3.744	30.717
1941	3.466	5,340	0.000	3.005	4.764	0.000	2.779	3.542	3.087	3.096	3.725	4.208	37.012
1942	4.887	4.128	5.510	2.559	0.000	4 213	0.000	2.221	3.087	3.096	3.725	4.208	33.422
1943	2 416	5.340	5 348	2.338	0.959	4.629	1.845	3.084	2,638	2.647	3.264	3.744	38.332
1945	2.912	3.365	5.235	0.000	0.023	1.008	2.190	3.498	3.022	2.890	3.725	4.208	32.076
1946	2.486	2.132	2.180	1.885	2.544	0.180	2.694	2.717	2.310	2.885	3.725	4.208	29.946
1947	3.733	4.538	2.077	2.104	3.093	0.000	2.470	3.542	3.087	2.933	3.725	3.893	35.196
1948	1.134	1.891	4.538	0.000	3.265	4.244	1.609	3.188	2.846	2.491	3.535	4.047	32.789
1949	4.572	2.280	0.023	3.933	1.831	2.583	0.622	2.624	2.966	3.096	3.703	4.208	32.441
1950	4.539	2.759	1.820	4.896	4.764	1.531	0.090	2.501	3.087	3.079	2.979	3.476	35.521
1951	2,005	4.295	4./50	2.418	2.765	1.638	1.622	3.495	2.489	2.584	3.692	4.177	35.531
1952	4.463	1.269	4.576	1.707	1.380	3.981	0.000	3.146	2.985	3.096	3.333	3.878	33.814
1954	2.968	0.000	0.946	2.118	0.103	1.415	1.854	2.653	2.999	3.085	3.725	4.208	26.074
1955	3.171	1.470	2.317	5.205	0.000	2.812	2.379	2.871	3.046	2.874	3.447	2.096	31.688
1956	4.596	4.554	1.968	1.200	0.000	2.486	2.124	3.098	2.792	2.545	3.490	3.067	31.919
1957	2.050	4.040	2.945	0.000	2.594	4.524	1.262	3.542	2.914	2.992	3.725	3.597	34.184
1958	4.205	3.264	2.068	0.000	0.490	3.064	2.403	3.535	3.087	2.627	3.725	4.101	32.569
1959	4.650	3.335	2.115	4,454	0.000	5.457	1.291	3 231	1.870	3,028	3.654	4.198	27 346
1961	3.819	4.088	2.790	2.287	2.988	1.248	0.115	3.542	3.002	3.096	3.461	3.906	34.341
1962	4.257	1.011	2,582	5.542	4.214	3.395	2.008	3.107	1.185	2.452	3.620	4.189	37.561
1963	3.709	3.851	2.602	3.380	4.445	4.313	2.175	3.162	3.084	3.096	3.699	3.996	41.510
1964	2.163	2.937	0.831	2.484	2.313	3.592	2.397	3.537	3.084	3.096	3.725	3.303	33.462
1965	4.609	3.772	4.805	0.000	0.000	4.597	2.475	3.382	2.661	3.096	3.135	4.073	36.605
1966	2.848	3,894	2.412	0.000	0.000	2.646	0.752	3.510	3.078	2.392	3.725	4.201	29.458
1967	3.643	3.268	0.134	1 454	2.552	4.531	1.820	3.542	3.087	2 893	3,083	3 685	38.041
1969	0.793	3.750	2.920	5.596	3.321	4.281	2.397	3.461	2.972	2.691	3.725	4.195	40.102
1970	3,996	4.436	1.176	0.083	4.505	3.022	1.538	3.198	2.338	3.096	3.723	3.635	34.746
1971	2.688	2.588	1.585	0.000	0.000	0.000	2.256	2.424	3.087	3.008	3.617	4.146	25.399
1972	2.585	3.366	4.345	3.523	3.306	1.148	0.978	3.152	3.087	2.911	3.725	0.000	32.126
1973	2.740	3.030	2.411	2.785	0.000	1.713	1.131	2.917	3.087	1.217	3.539	2.116	26.688
1974	4.571	2.508	3.021	0.000	0.556	4.421	0.775	2.842	2.842	3.096	3.725	4.201	32.559
1975	3 893	2 761	4 793	0.000	0.000	1.098	2 645	3 353	3.070	3.096	3.610	1 221	29.556
1977	4.578	3.536	0.611	0.000	1.399	0.000	0.000	3.504	3.064	3.068	3.717	4.201	27.678
1978	2.296	1.125	0.404	2.254	1.801	2.781	1.824	2.692	3.085	2.946	1.130	4.176	26.514
1979	2.043	3.516	1.362	1.396	0.000	1.688	1.601	3.460	3.087	3.095	3.608	1.655	26.510
1980	3.266	0.000	1.430	0.000	1.014	0.725	2.529	3.333	3.087	3.096	3.402	3.301	25.182
1981	2.703	2.419	3.851	4.499	4.118	4.002	1.690	2.802	2.972	3.087	3.725	4.208	40.075
1982	4,031	3.561	4.129	3.946	4.754	0.287	2./10	3.294	2.802	3.038	3.347	4.190	40.088
1984	0.229	2.143	3.613	0.000	0.209	1.294	2.535	2.098	2.508	2.549	3.723	3.841	24.742
1985	1.069	3.295	2.755	4.538	1.867	4.276	0.000	3.517	3.087	3.096	3.515	3.898	34.913
1986	3.895	2.511	2.185	3.948	2.558	0.239	2.726	2.858	2.995	3.096	2.290	1.741	31.044
1987	2.655	4.331	0.000	3.337	0.000	0.439	2.634	3.498	2.555	3.096	3.357	3.594	29.495
1988	1.420	4.528	3.925	4.921	1.180	3.884	2.497	3.167	2.597	3.082	3.725	4.208	39.133
1989	1.589	0.000	1.419	2.867	3.782	0.601	1.614	3.542	3.087	2.938	3.703	4.208	29.349
1990	2.630	2.931	1.811	2.500	1.019	1.163	2.660	3.3//	2.165	3.096	3.725	4.170	31.24/
1991	4.770	3 601	4.505	4 031	2 760	2 7 3 9	2.555	3.042	3.087	2 967	3.634	4.208	39 086
1993	3.599	1.862	0.681	2.152	4.625	3.180	1.839	3.468	3.087	3.096	3.725	3.912	35.225
1994	2.525	5.042	4.170	1.107	1.494	2.637	0.384	2.467	3.087	3.096	3.576	4.079	33.664
1995	3.349	3.158	4.093	0.000	0.000	1.006	2.040	2.292	2.922	1.295	3.584	3.951	27.690
1996	3.040	2.357	5.123	0.000	0.000	1.813	1.490	2.873	3.087	3.093	3.645	2.860	29.381
1997	3,900	0.511	5.048	2.488	4.616	4.401	2.219	3.542	3.087	2.988	3.609	3.947	40.355
1998	2.869	2.393	0.236	1.782	1.896	1.116	1.319	3.051	3.082	2.841	3.565	4.208	28.458
2000 TAAA	3 407	2.110	3 900	4 825	0.000	2 565	2 060	3.420	2,234	3.059	3,712	4.093	36 392
2000	1.326	0.000	0.121	0.595	4,663	4,501	0.861	3.449	2.826	3,092	3,725	2,690	27.849
2002	4.283	5.016	2.711	2.346	1.857	2.940	2.619	3.542	2.289	3.096	3.725	3.918	38.343
2003	3,604	3.919	3.286	3.875	0.000	0.000	1.308	3.531	2.708	3.043	3.603	4.163	33.040
2004	4.064	3.378	2.887	2.346	3.463	4.160	2.071	3.487	3.087	3.051	3.723	4.208	39.926
2005	4.773	1.853	4.589	2.149	1.191	1.056	2.332	3.080	2.633	2.642	3.259	3.739	33.295
Anore	2 201	2 050	2 500	2 340	1 053	2 1 7 7	1 600	2 100	7 070	7 700	2 EFF	7 200	22 002
Average	3.301	2.950	2.008	2.210	28 25	2.1/3	30	3.109	30	2.799	3.555	3.888	365.25
Average			~*	~*	_3.20	~*		~*		~**		50	
(m3/s)	1.232	1.138	0.974	0.825	0.759	0.811	0.654	1.161	1.090	1.045	1.327	1.423	1.039

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	В	81E10								
			2 000	14223	Monthly in	rigation der	nand in 10^	6m^3	1000	1.1	A.u.a	For	Total
Year	Oct 0 204	Nov 0.811	Dec 0.836	Jan 0.482	Feb 0.083	Mar 0.478	Apr 0.479	0 541	0.495	0 299	0.617	0.733	6.469
1925	0.826	0.718	0.875	0.482	0.482	0.642	0.447	0.487	0.495	0.365	0.615	0.738	6.945
1927	0.329	0.568	0.670	0.328	0.696	0.684	0.351	0.537	0.495	0.495	0.537	0.719	6.410
1928	0.757	0.610	0.690	0.393	0.001	0.003	0.434	0.555	0.433	0.450	0.514	0.695	5.534
1929	0.557	0.355	0.439	0.421	0.219	0.388	0.065	0.523	0.475	0.461	0.613	0.673	5.190
1930	0.832	0.719	0.000	0.665	0.465	0.437	0.217	0.566	0.463	0.273	0.617	0.721	5.975
1931	0.605	0.484	0.827	0.531	0.397	0.509	0.294	0.395	0.472	0.506	0.610	0.751	6 297
1932	0.704	0.541	0.487	0.231	0.385	0.854	0.365	0.520	0.433	0.506	0.523	0.643	5.135
1934	0.443	0.285	0.781	0.912	0.563	0.759	0.487	0.461	0.495	0.506	0.617	0.646	6.956
1935	0.698	0.888	0.686	0.000	0.000	0.028	0.450	0.447	0.495	0.430	0.617	0.477	5.216
1936	0.838	0.608	0.748	0.250	0.000	0.388	0.390	0.566	0,495	0.506	0.617	0.680	6.086
1937	0.729	0.780	0.205	0.021	0.750	0.606	0.036	0.529	0.476	0.500	0.604	0.431	5.667
1938	0.660	0.829	0.202	0.480	0.000	0.293	0.445	0.438	0.454	0.368	0.594	0.648	5.412
1939	0.483	0.847	0.000	0.908	0.615	0.134	0.365	0.271	0.144	0.506	0.617	0.625	5.516
1940	0.613	0.332	0.347	0.585	0.801	0.377	0.085	0.504	0.434	0.443	0.534	0.0739	6.481
1942	0.838	0.303	0.624	0.947	0.373	0.085	0.000	0.386	0.495	0.148	0.617	0.739	5.989
1943	0.838	0.729	0.972	0.512	0.000	0.722	0.487	0.566	0.441	0.506	0.617	0.739	7.129
1944	0.499	0.903	0.903	0.492	0.276	0.779	0.359	0.504	0.434	0.445	0.554	0.676	6.826
1945	0.568	0.633	0.888	0.000	0.143	0.280	0.407	0.560	0.487	0.478	0.617	0.739	5.799
1946	0.509	0.462	0.466	0.417	0.498	0.163	0.476	0.454	0.390	0.478	0.617	0.739	5.667
1947	0.681	0.794	0.451	0.448	0,573	0.000	0.445	0.566	0.495	0.484	0.617	0.696	6.251
1948	0.320	0.428	0.793	0.000	0,597	0.727	0.327	0.518	0.463	0.424	0.591	0.717	5.904
1949	0.795	0.483	0.156	0.703	0.399	0.499	0.190	0.441	0.479	0.506	0.515	0.739	6.005
1950	0.791	0.549	0.415	0.835	0.801	0.353	0.116	0.424	0.495	0.437	0.613	0.734	6,444
1952	0.580	0.692	0.197	0.285	0.165	0.449	0.137	0.564	0.495	0.486	0.617	0.726	5.396
1953	0.780	0.340	0.798	0.392	0.336	0.691	0.000	0.512	0.482	0.506	0.564	0.694	6.095
1954	0.576	0.021	0.290	0.450	0.155	0.337	0.360	0.445	0.484	0.505	0.617	0.739	4.979
1955	0.604	0.369	0.485	0.877	0.000	0.531	0.433	0.475	0.490	0.476	0.580	0.450	5.767
1956	0.798	0.796	0.436	0.320	0.000	0.486	0.397	0.506	0.455	0.431	0.585	0.583	5.794
1957	0.449	0.726	0.573	0.000	0.505	0.765	0.279	0.566	0.472	0.492	0.617	0.656	5.098
1958	0.745	0.619	0.450	0.000	0.210	0.565	0.436	0.565	0.495	0.445	0.613	0.724	5.909
1960	0.800	0.338	0.000	0.720	0.000	0.278	0.283	0.524	0.330	0.497	0,609	0.601	5.000
1961	0.693	0,732	0.551	0.474	0.559	0.313	0.120	0.566	0.484	0.506	0.581	0.698	6.277
1962	0.752	0.304	0.522	0.922	0.727	0.611	0.381	0.507	0.235	0.419	0.603	0.736	6.719
1963	0.677	0.700	0.525	0.626	0.758	0.736	0.404	0.514	0.495	0.506	0.614	0.710	7.266
1964	0.464	0.574	0.273	0.502	0.466	0.638	0.435	0.565	0.495	0.506	0.617	0.616	6.151
1965	0.800	0,689	0.829	0.093	0.079	0.774	0.446	0.544	0.438	0.506	0.537	0.720	6.455
1966	0.559	0.706	0.498	0.000	0,000	0.508	0,208	0.561	0.494	0.410	0.617	0.738	5.300
1967	0.669	0.620	0.581	0.856	0.471	0.766	0.350	0.452	0.380	0.303	0.617	0.668	5.371
1969	0.272	0.686	0.569	0.930	0.605	0.732	0.435	0.555	0.480	0.451	0.617	0.737	7.068
1970	0.717	0.780	0.323	0,159	0.766	0.560	0.317	0.519	0.394	0.506	0.617	0.661	6.318
1971	0.537	0.525	0.381	0.000	0.087	0.000	0.416	0.414	0.495	0.494	0.603	0.730	4.683
1972	0.523	0.633	0.766	0.646	0.603	0.299	0.239	0,513	0.495	0.481	0.617	0.000	5.817
1973	0.544	0.587	0.498	0.544	0.022	0.378	0.261	0.481	0.495	0.249	0.592	0.453	5.104
1974	0.795	0.514	0.583	0.083	0.219	0.751	0.211	0.4/1	0.462	0.506	0.617	0.738	5.951
1975	0.829	0.5/9	0.038	0.000	0.000	0.285	0.359	0.529	0.495	0.506	0.602	0.328	5,393
1977	0.796	0.657	0.242	0.135	0.338	0.000	0.093	0.561	0.492	0.502	0.616	0.738	5.170
1978	0.483	0.320	0.212	0.469	0.394	0.526	0.356	0.450	0.495	0.486	0.260	0.734	5.186
1979	0.448	0.654	0.350	0.348	0.000	0.375	0.326	0.555	0.495	0.506	0.601	0.389	5.046
1980	0.617	0.155	0,359	0.000	0.284	0.240	0.453	0.537	0.495	0.506	0.573	0.615	4.836
1981	0.539	0.502	0.698	0.780	0.714	0.694	0.338	0.465	0.480	0.505	0.617	0.739	7.071
1982	0.722	0.660	0.737	0.704	0.800	0.178	0.478	0.532	0.457	0.498	0.500	0.756	5 738
1983	0.007	0.264	0.645	0.505	0.087	0.320	0.454	0.369	0.417	0.432	0.617	0.689	4.788
1985	0.311	0.623	0.546	0.786	0.404	0.731	0.000	0.562	0.495	0.506	0,589	0.697	6.250
1986	0.703	0.515	0.466	0.705	0.500	0.171	0.480	0.473	0.483	0.506	0.421	0.401	5.823
1987	0.533	0.766	0.059	0.620	0.000	0.199	0.468	0.560	0.423	0.506	0.567	0,655	5.356
1988	0.360	0.793	0.709	0.838	0.308	0.678	0.449	0.515	0.429	0.504	0.617	0.739	6.938
1989	0.384	0.032	0.358	0.555	0.668	0.222	0.327	0.566	0.495	0.485	0.614	0.739	5.446
1990	0.529	0.573	0.413	0.504	0.285	0.301	0.471	0.543	0.370	0.506	0.617	0.733	5.848
1991	0.822	0.556	0.797	0.617	0.736	0.415	0.429	0.556	0.455	0.306	0.603	0.739	6 930
1993	0.662	0.424	0.252	0.455	0.783	0.581	0.358	0.556	0.495	0.506	0.617	0.698	6.388
1994	0.515	0.862	0.742	0.307	0.352	0.507	0.157	0.420	0.495	0.506	0.597	0.721	6.181
1995	0.628	0.604	0.732	0.095	0.000	0.280	0.386	0.396	0.473	0.260	0.598	0.704	5.155
1996	0.586	0.493	0.873	0.103	0.060	0.392	0.310	0.475	0.495	0.506	0.607	0.555	5.455
1997	0.704	0.232	0.862	0.502	0.781	0.748	0.411	0.566	0.495	0.492	0.602	0.703	7.098
1998	0.562	0.498	0.187	0.403	0.408	0.295	0.287	0.499	0.495	0.472	0.609	0.739	5.453
1999	0.413	0.460	0.360	0.113	0.000	0.000	0.188	0.550	0.382	0.485	0.616	0.723	6.415
2000	0.649	0.487	0.705	0.833	0.000	0.497	0.590	0.551	0.460	0.506	0.617	0.532	5.191
2001	0.756	0.859	0.540	0.482	0.402	0.548	0.465	0.566	0.387	0.506	0.617	0.699	6.829
2003	0,663	0.709	0.620	0.695	0.000	0.125	0.285	0.564	0.444	0.499	0.601	0.732	5.938
2004	0.726	0.635	0.565	0.482	0.624	0.715	0.390	0.558	0.495	0.500	0.617	0.739	7.047
2005	0.822	0.423	0.800	0.455	0.309	0.287	0.426	0.503	0.434	0.445	0.554	0.675	6.131
Contraction of the	1272200						0.000	0	0.450	0.000	0.004	0.000	EARC
Average	0.621	0.567	0.515	0.435	0.363	0.427	0.332	0.507	0.460	0.466	0.594	0.066	365 25
Average	51	50	21	51	20,23	21	50	21	50	31	34		
(m3/s)	0.232	0.219	0.192	0.162	0.149	0.159	0.128	0.189	0.177	0.174	0.222	0.257	0.189

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	B	81E25								
	100001-5-1	1980	1200	12010-0	Monthly in	rigation der	nand in 10'	6m^3	-				T
Year	Oct	Nov	1 222	Jan	Feb	Mar	Apr 0 802	0.832	Jun 0 737	0 348	0 825	0.961	9 163
1925	1 205	1.227	1.355	0.305	0.625	0.856	0.746	0.739	0.736	0.461	0.820	0.970	9.928
1920	0.339	0.803	1.043	0.429	0.998	0.930	0.577	0.826	0.737	0.686	0.687	0.936	8.992
1928	1.085	0.875	1.077	0.540	0.000	0.000	0.722	0.857	0.629	0.607	0.648	0.895	7.935
1929	0.735	0.434	0.643	0.589	0.170	0.414	0.077	0.801	0.701	0.627	0.818	0.857	6.866
1930	1.216	1.066	0.000	1.010	0.595	0.499	0.341	0.876	0.680	0.303	0.825	0.941	8.352
1931	0.818	0.657	1.317	0.778	0.476	0.623	0.477	0.579	0.696	0.705	0.812	0.957	8.895
1932	0.991	0.755	0.726	0.000	0.804	0.843	0.754	0.876	0.737	0.705	0.805	0.941	8.937
1933	1.110	0.000	0.873	0.263	0.1//	0.360	0.601	0.795	0.012	0.705	0.004	0.803	0.304
1934	0.535	1 362	1.236	1.445	0.766	0.000	0.817	0.653	0.737	0.703	0.825	0.505	7.482
1935	1 226	0.872	1 178	0.296	0.000	0.413	0.645	0.876	0.737	0.705	0.825	0.869	8.642
1937	1.034	1 172	0.243	0.000	1.092	0.793	0.027	0.812	0.702	0.693	0.803	0.435	7.808
1938	0.914	1.259	0.238	0.690	0.000	0.249	0.743	0.653	0.666	0.467	0.785	0.813	7.476
1939	0.607	1.290	0.000	1.436	0.856	0.000	0.602	0.363	0.127	0,705	0.825	0.773	7.582
1940	0.832	0.395	0.485	0.873	1.183	0.395	0.112	0.767	0.631	0.599	0.717	0.861	7.850
1941	0.887	1.388	0.146	0.853	1.183	0.000	0.817	0.876	0.737	0.705	0.825	0.971	9.388
1942	1.226	1.099	0.962	1.504	0.436	0.000	0.000	0.562	0.737	0.087	0.825	0.971	8.409
1943	1.226	1.084	1.571	0.745	0.000	0.997	0.817	0.876	0.642	0.705	0.825	0.971	10.458
1944	0.635	1 388	1.451	0.712	0.269	1.095	0.591	0.767	0.631	0.599	0.717	0.861	9.716
1945	0.754	0.916	1.424	0.000	0.040	0.226	0.074	0.680	0.722	0.655	0.825	0.971	7 699
1946	0.651	1 197	0.664	0.562	0.032	0.023	0.790	0.876	0.737	0.666	0.825	0.896	8.974
1947	0.325	0.561	1 257	0.000	0.825	1.004	0.534	0.792	0.680	0.563	0.781	0.933	8.254
1949	1.151	0.655	0.160	1.076	0.480	0.607	0.294	0.658	0.709	0.705	0.820	0.971	8.286
1950	1.143	0.770	0.601	1.307	1.183	0.353	0.166	0.629	0.737	0.701	0.651	0.797	9.038
1951	0.438	1.139	1.309	0.711	0.705	0.379	0.537	0.865	0.596	0.584	0.817	0.964	9.044
1952	0.774	1.019	0.230	0.356	0.078	0.520	0.203	0.873	0.737	0.670	0.825	0.949	7.234
1953	1.125	0.409	1.266	0.539	0.371	0.941	0.000	0.782	0.713	0.705	0.734	0.893	8.478
1954	0.767	0.000	0.388	0.639	0.060	0.325	0.593	0.665	0.716	0.702	0.825	0.971	6.651
1955	0.816	0.458	0.722	1.381	0.000	0.662	0.720	0.717	0.728	0.653	0.760	0.468	8.084
1956	1.157	1.201	0.637	0.415	0.000	0.583	0.658	0.7/1	0.668	0.575	0.770	0.700	8.135
1957	0.546	1.078	0.874	0.000	0.664	0.722	0.449	0.876	0.696	0.660	0.825	0.820	8.196
1950	1 170	0.892	0.602	1 197	0.104	0.816	0.064	0.320	0.672	0.672	0.817	0.969	8.326
1960	1.193	0.406	0.000	1.107	0.000	0.224	0.457	0.802	0.449	0.689	0.811	0.731	6.869
1961	0.971	1.089	0.837	0.680	0.758	0.285	0.172	0.876	0.717	0.705	0.763	0.899	8.752
1962	1.076	0.346	0.787	1.461	1.052	0.801	0.630	0.773	0.286	0.553	0.801	0.967	9.533
1963	0.945	1.033	0.791	0.944	1.107	1.020	0.671	0.786	0.737	0.705	0.819	0.921	10.477
1964	0.574	0.813	0.359	0.727	0,596	0.848	0.724	0.875	0.737	0.705	0.825	0.756	8.540
1965	1.160	1.014	1.321	0.029	0.000	1.088	0.743	0.838	0.637	0.705	0.687	0.939	9.161
1966	0.739	1.043	0.745	0.000	0,000	0.622	0.326	0.868	0.735	0.539	0.825	0.969	7.412
1967	0.929	0.893	0.889	0.976	0.606	1.073	0.585	0.678	0.537	0.703	0.815	0.968	9.649
1968	0.984	0.591	0.188	1.474	0.000	1.012	0.585	0.870	0.757	0.637	0.825	0.968	10 137
1969	1 014	1 173	0.808	0.140	1 121	0.712	0.516	0.794	0.560	0.705	0.824	0.835	8.839
1970	0.700	0.729	0.544	0.000	0.000	0.000	0.690	0.611	0.737	0.684	0.800	0.956	6.452
1972	0.675	0.916	1.211	0.978	0.835	0.260	0.381	0.784	0.737	0.661	0.825	0.000	8.263
1973	0.713	0.836	0.745	0.800	0.000	0.397	0.418	0.728	0.737	0.261	0.782	0.473	6.889
1974	1.151	0.710	0.892	0.013	0.171	1.046	0.331	0.710	0.680	0.705	0.825	0,970	8.203
1975	1.211	0.993	0.000	0.000	0,000	0.063	0.556	0.463	0.733	0.705	0.825	0.967	6.516
1976	0.989	0.771	1.318	0.007	0.000	0.248	0.784	0.831	0.737	0.705	0.798	0.257	7.446
1977	1.152	0.957	0.306	0.100	0.375	0.000	0.125	0.867	0.732	0.698	0.823	0.970	6 878
1978	0.606	0.952	0.254	0.672	0.475	0.034	0.580	0.856	0.737	0.704	0.798	0.362	6.830
1980	0.839	0.092	0.506	0.000	0.282	0.158	0.756	0.826	0.737	0.705	0.750	0.756	6.407
1981	0.704	0.688	1.092	1.212	1.029	0,946	0.553	0.700	0.710	0.703	0.825	0.971	10.134
1982	1.022	0.963	1.159	1.080	1.180	0.051	0.800	0.817	0.670	0.691	0.737	0.967	10.137
1983	0.927	0.278	1.002	0.733	0.983	0.247	0.593	0.876	0.671	0.159	0.778	0.577	7.825
1984	0.104	0.622	1.035	0.000	0.086	0.296	0.758	0.533	0.601	0.576	0.825	0.884	6.318
1985	0.309	0.899	0.828	1.222	0.489	1.012	0.000	0.870	0.737	0.705	0.776	0.897	8.743
1986	0.989	0.711	0.690	1.080	0.655	0.039	0.804	0.714	0.716	0.705	0.489	0.383	7 390
1987	0.592	1.14/	0.000	1 21 2	0.000	0.088	0.762	0.805	0.612	0.705	0.735	0.823	9 907
1080	0.435	0.000	0.504	0.820	0.949	0,127	0.535	0.876	0.737	0.668	0.820	0.971	7.441
1990	0.686	0.812	0.599	0.731	0.283	0.264	0.788	0.837	0.519	0.705	0.825	0.962	8.012
1991	1.198	0.782	1.264	0.928	1.069	0.460	0.714	0.876	0.632	0.705	0.804	0.971	10.403
1992	1,212	0.973	0.565	1.100	0.704	0.644	0.641	0.860	0.737	0.674	0.813	0.971	9.893
1993	0.918	0.553	0.323	0.647	1.150	0.750	0.589	0.858	0.737	0.705	0.825	0.901	8.956
1994	0.661	1.317	1.169	0.392	0.398	0.620	0.237	0.621	0.737	0.705	0.790	0.941	8.588
1995	0.859	0.866	1.151	0.033	0.000	0.226	0.638	0.579	0.698	0.280	0.792	0.910	7.032
1996	0.785	0.673	1.397	0.047	0.000	0.421	0.505	0.717	0.737	0.704	0.806	0.650	7.443
1997	0.991	0.224	1.379	0.728	1.148	1.041	0.681	0.876	0.737	0.679	0.798	0.909	10.192
1998	0.744	0.682	0.213	0.557	0.496	0.253	0,463	0.760	0.735	0.645	0.823	0.9/1	5.786
2000 TAAA	0.485	0.613	1 104	1 304	0.000	0.602	0.645	0.815	0,690	0,696	0.822	0.971	9.207
2000	0.371	0.000	0.184	0.267	1.159	1.065	0.352	0.854	0.676	0.704	0.825	0.610	7.067
2002	1.082	1.311	0.818	0.694	0.486	0.692	0.778	0.876	0.549	0.705	0.825	0.902	9.718
2003	0.920	1 049	0.957	1.063	0.000	0.000	0.461	0.873	0.648	0.692	0.796	0,960	8.419
2004	1.030	0.919	0.860	0.694	0.872	0.984	0.645	0.863	0.737	0.694	0.825	0.971	10.095
2005	1.199	0.551	1.269	0.646	0.325	0.238	0.709	0.766	0.630	0.598	0.716	0.860	8.508
0.35	202000			<u>an</u> gaan -	20040	2000			o		A 745	0.010	0.000
Average	0.848	0.810	0.781	0.634	0.473	0.509	0.545	0.773	0.675	0.635	0.785	0.848	8.323
A	31	30	31	31	28.25	31	30	51	30	31	31	30	505.25
(m3/s)	0.316	0.313	0.291	0.237	0.194	0.190	0.210	0.289	0.261	0.237	0.293	0.327	0.264
	0.000	22-222(22-22)	0.000	10000000000	800767008	4860703327022							

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	B	81D01								
	-				Monthly irr	igation der	nand in 10 ⁷	6m^3	1	1.1	0	Con	Total
1925	0 204	0.699	0.856	Jan 0.354	0.000	0.285	0.500	0.550	0.500	0.202	0.542	0.497	5.372
1926	0,670	0.574	0.908	0.060	0.320	0.505	0.456	0.479	0.500	0.289	0.539	0.504	5.804
1927	0.006	0.372	0.632	0.154	0.608	0.562	0.328	0.546	0.500	0.463	0.437	0.479	5.087
1928	0.577	0.428	0.658	0.238	0.000	0.000	0.438	0.569	0.417	0.402	0.407	0.449	4.583
1929	0.309	0.090	0.326	0.274	0.000	0.166	0.000	0.527	0.472	0.417	0.537	0.421	3.540
1930	0.679	0.575	0.000	0.597	0.298	0.231	0.148	0.584	0.455	0.168	0.542	0.485	5.007
1931	0.505	0.260	0.845	0.419	0.458	0.495	0.463	0.584	0.500	0.477	0.528	0.483	5.217
1933	0.596	0.000	0.502	0.028	0.000	0.125	0.346	0.522	0.404	0.477	0.419	0.381	3.800
1934	0.156	0.000	0.781	0.931	0.429	0.663	0.511	0.444	0.500	0.477	0,542	0.385	5.820
1935	0.497	0.804	0.653	0.000	0.000	0.000	0.461	0.425	0.500	0,375	0.542	0.165	4.422
1936	0.686	0.425	0.736	0.053	0.000	0.165	0.380	0.584	0.500	0.477	0.542	0.429	4.979
1937	0.538	0.657	0.025	0.000	0.681	0.457	0.000	0.535	0.474	0.468	0.526	0.105	4.465
1938	0.445	0.724	0.020	0.351	0.000	0.040	0.454	0.413	0.445	0.294	0.512	0.358	4.328
1939	0.383	0.060	0.206	0.491	0.751	0.152	0.000	0.501	0.419	0.396	0.460	0.423	4.242
1941	0.425	0.824	0.000	0.477	0.751	0.000	0.511	0.584	0.500	0.477	0.542	0.505	5.597
1942	0.686	0.600	0.570	0.979	0.175	0.000	0.000	0.343	0.500	0,002	0.542	0.505	4.903
1943	0.686	0.588	1.040	0.394	0.000	0.614	0.511	0.584	0.427	0.477	0.542	0.505	6.369
1944	0.232	0.824	0.947	0.368	0.048	0.690	0.338	0.501	0.419	0.396	0.460	0.423	5.646
1945	0.323	0.459	0.926	0.000	0.000	0.023	0.402	0.576	0.489	0.440	0.542	0.505	4.003
1946	0.244	0.231	0.301	0.209	0.341	0.000	0.455	0.584	0.500	0.448	0.542	0.450	5.222
1948	0.000	0.187	0.797	0.000	0.474	0.619	0.295	0.520	0.457	0.368	0.508	0.477	4.701
1949	0.628	0.258	0.000	0.648	0.209	0.313	0.112	0.417	0.478	0.477	0.538	0.505	4.586
1950	0.622	0.347	0.295	0.826	0.751	0.120	0.014	0.394	0.500	0.474	0.409	0.376	5.129
1951	0.082	0.631	0.837	0.368	0.382	0.139	0.297	0.575	0.391	0.385	0.537	0.500	5.124
1952	0.338	0.539	0.015	0.098	0.000	0.247	0.042	0.582	0.500	0.451	0.542	0.489	3.843
1953	0.608	0.072	0.804	0.235	0.126	0.571	0.000	0.512	0.482	0.477	0.472	0.505	3.646
1954	0.555	0.109	0.386	0.883	0.000	0.356	0.437	0.462	0.493	0.437	0.493	0.130	4.556
1956	0.633	0.679	0.322	0.143	0.000	0.296	0.390	0.503	0.447	0.378	0.500	0.303	4.593
1957	0.164	0.584	0.502	0.000	0.350	0.671	0.231	0.584	0.469	0.458	0.542	0.397	4.953
1958	0.561	0.440	0.340	0.000	0.000	0.402	0.442	0.583	0.500	0.393	0.542	0.486	4.689
1959	0.643	0.490	0.349	0.741	0.000	0.474	0.000	0.158	0.450	0.452	0.537	0.503	4.797
1960	0.661	0.069	0.000	0.672	0.000	0.021	0.235	0.527	0.279	0.465	0.552	0.452	4.902
1961	0.490	0.024	0.436	0.945	0.650	0.463	0.368	0,505	0.153	0.361	0.524	0.502	5.500
1963	0.469	0.549	0.439	0.546	0.692	0.632	0.399	0.515	0.500	0.477	0.538	0.468	6.224
1964	0.185	0.380	0.112	0.380	0.298	0.499	0.440	0.583	0.500	0.477	0.542	0.345	4.743
1965	0.635	0.534	0.846	0.000	0.000	0.684	0.455	0.555	0.423	0.477	0.437	0.481	5,528
1966	0.311	0.557	0.404	0.000	0.000	0.325	0.136	0.578	0.499	0.350	0.542	0.504	4.207
1967	0.457	0.441	0.514	0.570	0.305	0.672	0.334	0.432	0.346	0.476	0.535	0.503	5.585
1968	0.499	0.210	0.000	0.190	0.305	0.626	0.332	0.569	0.480	0.404	0.542	0,503	6.033
1970	0.522	0.657	0.175	0.000	0.703	0.394	0.282	0,521	0.364	0.477	0.542	0.404	5.043
1971	0.282	0.315	0.251	0.000	0.000	0.000	0.414	0.380	0.500	0.461	0.523	0.494	3.622
1972	0.263	0.459	0.761	0.572	0.482	0.049	0.178	0.513	0.500	0.444	0.542	0.000	4.764
1973	0.291	0.397	0.404	0.436	0.000	0.153	0.206	0.470	0.500	0.136	0.509	0.134	3.637
1974	0.628	0.301	0.517	0.000	0.000	0.652	0.141	0.457	0.455	0.477	0.542	0.504	4.6/4
1975	0.675	0.518	0.000	0.000	0.000	0.000	0.486	0.550	0.500	0.477	0.522	0.000	4.270
1977	0.629	0.491	0.071	0.000	0.129	0.000	0.000	0.577	0.496	0.472	0.541	0.504	3.911
1978	0.209	0.045	0.033	0.338	0.203	0.350	0.334	0.429	0.500	0.450	0.075	0.499	3.467
1979	0.163	0.487	0.210	0.179	0.000	0.149	0.293	0.569	0.500	0.477	0.522	0.050	3.599
1980	0.388	0.000	0.222	0.000	0.058	0.000	0.465	0.546	0.500	0.477	0.485	0.345	3.486
1981	0.284	0.284	0.670	0.753	0.632	0.575	0.310	0.449	0,479	0.4/6	0.542	0,505	5.959
1982	0.529	0.495	0.721	0.850	0.749	0.000	0.340	0.584	0.448	0.057	0.507	0.211	4.225
1984	0.000	0.233	0.626	0.000	0.000	0.076	0.466	0.321	0.395	0.378	0.542	0.440	3.478
1985	0.000	0.446	0.467	0.760	0.216	0.625	0.000	0.579	0.500	0.477	0.505	0.450	5.027
1986	0.504	0.301	0.362	0.651	0.343	0.000	0.501	0.459	0.484	0.477	0.285	0.066	4.434
1987	0.276	0.638	0.000	0.538	0.000	0.000	0.484	0.576	0.404	0.477	0.477	0.397	4.266
1988	0.048	0.674	0.684	0.831	0.089	0.553	0.459	0.516	0.411	0.475	0.542	0.505	5.760 A 193
1989	0.079	0.000	0.220	0.451	0.570	0.000	0.290	0.554	0.333	0.477	0.538	0.499	4.330
1991	0.665	0.356	0.802	0.534	0.663	0.201	0.433	0.584	0.419	0.477	0.526	0.505	6.165
1992	0.675	0.503	0.267	0.666	0.381	0.342	0.377	0.571	0.500	0.454	0.533	0.505	5.774
1993	0.449	0.181	0.084	0.319	0.726	0.423	0.337	0.571	0.500	0.477	0.542	0.453	5.063
1994	0.252	0.769	0.729	0.126	0,147	0.323	0.068	0.388	0.500	0.477	0.516	0.482	4.778
1995	0.403	0.421	0.715	0.000	0.000	0.023	0.374	0.356	0.470	0.150	0.517	0.460	3.890
1996	0.346	0.273	0.905	0.000	0.000	0.172	0.273	0.462	0,500	0.458	0.528	0.459	6.079
1008	0.305	0.279	0.002	0.250	0.221	0.043	0.241	0.495	0.499	0.431	0.532	0.505	3.814
1999	0.117	0.228	0.223	0.000	0.000	0.000	0.110	0.563	0.349	0.449	0.541	0.485	3.066
2000	0.431	0.265	0.679	0.824	0.000	0.310	0.380	0.537	0.464	0.471	0.540	0.505	5.406
2001	0.031	0.000	0.000	0.031	0.733	0.667	0.156	0.567	0.453	0.476	0.542	0.236	3.893
2002	0.575	0.764	0.459	0.355	0.214	0.379	0.481	0.584	0.355	0.477	0.542	0.454	5.641
2003	0.450	0.561	0.566	0.637	0.000	0.000	0.239	0.582	0.431	0.468	0.521	0.497	4.953
2004	0.535	0.462	0.492	0.355	0.091	0.004	0.380	0.574	0.418	0.395	0.459	0.422	4.715
2003	0.000	0.100	0.000	0.010		-/							
Average	0.402	0.394	0.444	0.349	0.256	0.268	0.311	0.505	0.453	0.423	0.512	0.416	4.736
cm 545000 (08 75 85)	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average			_	2 ····· ··	2,122		0.400	0.000	0.475	0.150	0.10/	0.101	0.150
(m3/s)	0.150	0.152	0.166	0.130	0.105	0.100	0.120	0.189	0.175	0 158	0.191	0.161	0.150

FIXED AREA II	RRIGATION	DEMAND 1	IME SERIES		B81D10								
Vear	Oct	Nov	Dec	lan	Monthly i Feb	rrigation dei Mar	mand in 10 Apr	A6mA3 May	lun	tul	Διια	Sen	Total
1925	0.204	0.257	0.296	0.010	0.000	0.000	0.267	0.269	0.227	0.000	0.283	0.286	2.340
1926	0.485	0.284	0.399	0.000	0.226	0.186	0.144	0.126	0.224	0.157	0.186	0.331	2.749
1927	0.000	0.249	0.344	0.000	0.164	0.192	0.000	0.140	0.235	0.188	0.174	0.364	2.051
1928	0.428	0.194	0.284	0.265	0.000	0.000	0.151	0.240	0.109	0.179	0.183	0.301	2.332
1929	0.271	0.232	0.000	0.225	0.110	0.000	0.177	0.260	0.223	0.172	0.275	0.300	2.246
1930	0.465	0.000	0.413	0.138	0.229	0.097	0.205	0.147	0.218	0.237	0.293	0.320	2.704
1932	0.323	0.457	0.228	0.000	0.170	0.246	0.161	0.252	0.234	0.236	0.256	0.379	2.940
1933	0.366	0.000	0.294	0.000	0.000	0.000	0.208	0.252	0.156	0.223	0.261	0.336	2.096
1934	0.339	0.000	0.079	0.141	0.229	0.226	0.277	0.145	0.221	0.222	0.290	0.314	2.484
1935	0.360	0.545	0.433	0.235	0.000	0.000	0.139	0.090	0.158	0.152	0.272	0.276	2.659
1936	0.201	0.020	0.116	0.000	0.000	0.048	0.256	0.273	0.231	0.192	0.269	0.261	1.868
1937	0.564	0.300	0.015	0.005	0.000	0.205	0.000	0.094	0.125	0.220	0.267	0.133	1.490
1939	0.359	0.000	0.000	0.339	0.177	0.000	0.000	0.230	0.024	0,230	0.218	0.145	1.723
1940	0.397	0.198	0.125	0.381	0.278	0.300	0.000	0.270	0.235	0.229	0.241	0.376	3.029
1941	0.306	0.381	0.286	0.174	0.439	0.000	0.237	0.075	0.149	0.184	0.194	0.168	2.594
1942	0.138	0.255	0.111	0.484	0.251	0.000	0.000	0.219	0.235	0.032	0.051	0.246	2.021
1943	0.424	0.167	0.359	0.184	0.000	0.064	0.233	0.274	0.048	0.237	0.272	0.344	2.606
1944	0.046	0.310	0.455	0.127	0.000	0.059	0.180	0.279	0.235	0.214	0.275	0.388	2.568
1945	0.125	0.305	0.291	0.000	0.000	0.107	0.000	0.256	0.195	0.250	0.282	0.394	2.551
1947	0.289	0.128	0.069	0.074	0.087	0.000	0.201	0.211	0.235	0.220	0.267	0.354	2.135
1948	0.013	0.273	0.453	0.000	0.027	0.207	0.213	0.100	0.157	0.174	0.286	0.293	2.197
1949	0.408	0.122	0.105	0.123	0.000	0.000	0.000	0.137	0.178	0.219	0.236	0.344	1.872
1950	0.456	0.243	0.000	0.239	0.493	0.000	0.037	0.000	0.234	0.220	0.204	0.195	2.320
1951	0.050	0.441	0.295	0.320	0.199	0.261	0.130	0.252	0.179	0.132	0.250	0.390	2.897
1952	0.348	0.066	0.038	0.000	0.000	0.000	0.000	0.245	0.235	0.166	0.239	0.359	1.697
1953	0.373	0.043	0.021	0.000	0.000	0.000	0.045	0.208	0.200	0.193	0.285	0.347	1.819
1955	0.144	0.000	0.000	0.155	0.000	0.000	0.228	0.115	0.118	0.211	0.270	0.080	1.321
1956	0.334	0.286	0.286	0.272	0.000	0.000	0.000	0.157	0.166	0.041	0.161	0.252	1.955
1957	0.043	0.319	0.377	0.000	0.207	0.150	0.055	0.274	0.214	0.234	0.292	0.027	2.193
1958	0.278	0.273	0.000	0.000	0.000	0.187	0.299	0.268	0.229	0.150	0.291	0.324	2.299
1959	0.283	0.000	0.072	0.406	0.000	0,152	0.017	0.192	0.114	0.231	0.273	0.300	2.039
1960	0.386	0.000	0.000	0.435	0.000	0.000	0.000	0.229	0.100	0.108	0.168	0.287	1.712
1962	0.564	0.342	0.290	0.180	0,303	0,290	0.038	0.154	0.255	0.235	0.255	0.300	2 579
1963	0.319	0.287	0.320	0.127	0.211	0.401	0.192	0.253	0.235	0.237	0.290	0.336	3.209
1964	0.128	0.281	0.000	0.000	0.228	0.340	0.218	0.268	0.214	0.231	0.248	0.246	2.402
1965	0.406	0.231	0.423	0.000	0.000	0.337	0.241	0.271	0.211	0.207	0.265	0.239	2.832
1966	0.201	0.321	0.044	0.122	0.000	0.000	0.000	0.239	0.224	0.164	0.283	0.384	1.982
1967	0.286	0.092	0.399	0.452	0.170	0.000	0.032	0.101	0.084	0.178	0.249	0.375	2.418
1968	0.301	0.055	0.105	0.032	0.307	0.000	0.059	0.263	0.201	0.198	0.274	0.292	2.088
1970	0.000	0.364	0.239	0.403	0.194	0.335	0.200	0.129	0.185	0.133	0.290	0.320	2.363
1971	0.058	0.069	0 177	0.000	0.000	0.000	0,050	0.119	0.226	0.219	0.220	0.374	1.511
1972	0.070	0.189	0.548	0.295	0.202	0.125	0.000	0.223	0.220	0.142	0.267	0.000	2.281
1973	0.073	0.140	0.000	0.000	0.000	0.000	0.048	0.179	0.206	0.214	0.238	0.108	1.206
1974	0.375	0.069	0.063	0.000	0.000	0.000	0.126	0.164	0.188	0.233	0.256	0.353	1.827
1975	0.357	0.306	0.000	0.000	0.000	0.000	0.127	0.000	0.206	0.237	0.274	0.352	1.859
1976	0.310	0.100	0.391	0.000	0.000	0.000	0.110	0.239	0.234	0.237	0.202	0.008	2.084
1978	0.349	0.000	0.327	0.103	0.161	0.000	0.206	0.130	0.225	0.193	0.047	0.293	2.034
1979	0.107	0.149	0.100	0.030	0.000	0.081	0.190	0.250	0.235	0.215	0.179	0.141	1.678
1980	0.223	0.000	0.148	0.000	0.000	0.000	0.146	0.203	0.235	0.225	0.149	0.260	1.588
1981	0.157	0.046	0.278	0.232	0.383	0.249	0.065	0.068	0.235	0.209	0.279	0.321	2.524
1982	0.262	0.251	0.348	0.318	0.363	0.131	0.277	0.255	0.174	0.230	0.143	0.373	3.125
1983	0.155	0.183	0.555	0.416	0.206	0.000	0.138	0.276	0.219	0.000	0.21/	0.278	1 019
1985	0.143	0.377	0.247	0.304	0.072	0.189	0.200	0.195	0.204	0.235	0.224	0.342	2.532
1986	0.071	0.028	0.261	0.344	0.000	0.162	0.235	0.190	0.134	0.237	0.214	0.000	1.876
1987	0.264	0.256	0.000	0.252	0.000	0.000	0.197	0.259	0.038	0.205	0.185	0.176	1.832
1988	0.000	0.369	0.341	0.348	0.000	0.322	0.145	0.232	0.108	0.227	0.239	0.359	2.690
1989	0.213	0.028	0.116	0.015	0.028	0.000	0.086	0.247	0.235	0.194	0.262	0.368	1.792
1990	0.255	0.228	0.116	0.000	0.012	0.000	0.312	0.232	0.103	0.237	0.286	0.329	2.110
1991	0.448	0.228	0.513	0.505	0.390	0.211	0.287	0.279	0.209	0.237	0.272	0.368	3.948
1993	0.367	0.016	0.138	0.209	0.212	0.228	0.243	0.275	0.232	0.133	0.213	0.357	2.704
1994	0.110	0.423	0.203	0.220	0.004	0.000	0.043	0.171	0.233	0.232	0.249	0.365	2.252
1995	0.334	0.000	0.000	0.000	0.000	0.091	0.119	0.000	0.152	0.040	0.114	0.358	1.208
1996	0.259	0.145	0.334	0.000	0.000	0.000	0.175	0.231	0.235	0.185	0.284	0.075	1.923
1997	0.216	0.066	0.380	0.000	0.267	0.326	0.182	0.279	0.229	0.060	0.265	0.218	2.489
1998	0.104	0.124	0.000	0.000	0.000	0.000	0.060	0.078	0.178	0.003	0.266	0.337	1.151
1999	0.336	0.111	0.061	0.000	0.000	0.000	0.093	0.207	0.164	0.166	0.220	0.320	1.678
2000	0.173	0.212	0.105	0.516	0.000	0.141	0.178	0.140	0.205	0.181	0.280	0.339	2.530
2001	0.232	0.479	0.392	0.348	0.139	0.227	0.314	0.262	0.063	0.223	0.293	0.270	3.241
2003	0.283	0.337	0.424	0.276	0.000	0.000	0.000	0.271	0.187	0.186	0.238	0.331	2.534
2004	0.251	0.338	0.135	0.166	0.444	0.091	0.068	0.238	0.203	0.232	0.249	0.320	2.734
2005	0.412	0.187	0.087	0.121	0.000	0.000	0.093	0.207	0.164	0.166	0.220	0.320	1.977
	0.202	0.101	0.305	0 455	0.000	0.104		A 444	0.400	0.105	0.2-2	0 307	
Average	0.257	0.194	0.200	0.158	0.110	0.101	0.132	0.198	0.183	0.185	0.242	0.287	2.252
Average	51	50	TC	21	20.23	31	50	21	50	21	21	50	202.20
(m3/s)	0.096	0.075	0.075	0.059	0.045	0.038	0.051	0.074	0.071	0.069	0.090	0.111	0.071

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	B	81D13								
No. 2010.017.0			1-12/07		Monthly in	rigation dei	mand in 10	^6m^3					T
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr 0.200	May 0.191	Jun 0 157		Aug 0 196	5ep	1 675
1925	0.204	0.199	0.262	0.000	0.144	0.142	0.118	0.097	0.154	0.107	0.132	0.258	1.970
1927	0.000	0.176	0.225	0.000	0.103	0.146	0.000	0.106	0.162	0.127	0.124	0.280	1.448
1928	0.319	0.139	0.184	0.163	0.000	0.000	0.122	0.172	0.079	0.121	0.130	0.238	1.666
1929	0.215	0.165	0.000	0.136	0.066	0.000	0.139	0.186	0.154	0.117	0.191	0.237	1.605
1930	0.359	0.191	0.000	0.057	0.000	0.000	0.000	0.195	0.157	0.000	0.203	0.255	1.417
1931	0.276	0.000	0.272	0.076	0.147	0.082	0.158	0.111	0.151	0.159	0.202	0.278	1.912
1932	0.249	0.315	0.146	0.000	0.106	0.182	0.129	0.180	0.161	0.158	0.178	0.289	2.094
1933	0.278	0.000	0.191	0.000	0.000	0.000	0.160	0.180	0.110	0.150	0.182	0.261	1.511
1934	0.260	0.003	0.045	0.078	0.146	0.169	0.206	0.109	0.155	0.149	0.201	0.246	1.885
1935	0.274	0.373	0.285	0.000	0.000	0.049	0.192	0.194	0.159	0.130	0.187	0.212	1.378
1937	0.290	0.307	0.000	0.000	0.205	0.193	0.000	0.161	0.088	0,148	0.185	0.141	1.718
1938	0.126	0.211	0.000	0.072	0.000	0.000	0.167	0.075	0.095	0.035	0.172	0.156	1.108
1939	0.273	0.000	0.000	0.214	0.111	0.000	0.011	0.166	0.022	0.155	0.153	0.134	1.239
1940	0.298	0.141	0.075	0.241	0.179	0.218	0.001	0.192	0.162	0.154	0.169	0.288	2.118
1941	0.237	0.264	0.185	0.101	0.287	0.000	0.180	0.063	0.105	0.124	0.137	0.149	1.834
1942	0.125	0.180	0.065	0.310	0.161	0.000	0.000	0.158	0.162	0.023	0.043	0.201	1.429
1943	0.316	0.120	0.235	0.108	0.000	0.059	0.177	0.195	0.038	0.159	0.189	0.267	1.863
1944	0.063	0.217	0.299	0.069	0.000	0.056	0.141	0.198	0.162	0.144	0.191	0.295	1.836
1945	0.116	0.213	0.189	0.000	0.000	0.088	0.144	0.1/1	0.135	0.155	0.196	0.300	1.708
1946	0.272	0.234	0.312	0.242	0.000	0.059	0.010	0.153	0.110	0.145	0.205	0.230	1 515
1947	0.227	0.197	0.030	0.032	0.000	0.000	0.155	0.079	0.110	0.117	0.198	0.233	1.597
1949	0.305	0.090	0.061	0.066	0.000	0.000	0.000	0.104	0.124	0.148	0.165	0.266	1.329
1950	0.337	0.172	0.000	0.146	0.322	0.012	0.046	0.000	0.161	0.148	0.144	0.167	1.654
1951	0.065	0.305	0.192	0.200	0.126	0.192	0.108	0.180	0.125	0.090	0.174	0.297	2.053
1952	0.266	0.051	0.014	0.000	0.000	0.000	0.000	0.176	0.162	0.113	0.167	0.277	1.225
1953	0.282	0.035	0.002	0.000	0.000	0.132	0.051	0.151	0.139	0,159	0.125	0.269	1.344
1954	0.217	0.029	0.053	0.000	0.000	0.000	0.048	0.123	0.103	0.130	0.197	0.268	1.170
1955	0.129	0.000	0.000	0.088	0.000	0.000	0.173	0.090	0.085	0.142	0.187	0.091	0.985
1956	0.257	0.201	0.185	0.168	0.000	0.000	0.000	0.118	0.116	0.030	0.115	0.205	1.395
1957	0.061	0.223	0.247	0.000	0.132	0.118	0.058	0.195	0.148	0.157	0.202	0.054	1.594
1958	0.219	0.192	0.000	0.000	0.000	0.142	0.220	0.191	0.138	0.155	0.189	0.233	1.474
1960	0.291	0.000	0.000	0.278	0.000	0.000	0.000	0.165	0.072	0.074	0.120	0.228	1.228
1961	0.290	0.238	0.193	0.105	0.196	0.215	0.060	0.142	0.162	0.157	0.203	0.281	2.240
1962	0.320	0.005	0.018	0.205	0.230	0.219	0.090	0.123	0.048	0.117	0.188	0.269	1.833
1963	0.246	0.201	0.208	0.069	0.134	0.285	0.149	0.181	0.162	0.159	0.201	0.261	2.258
1964	0.118	0.197	0.000	0.000	0.145	0.245	0.167	0.191	0.148	0.155	0.173	0.201	1.741
1965	0.304	0.164	0.279	0.000	0.000	0.242	0.182	0.193	0.146	0.140	0.184	0 197	2.031
1966	0.168	0.224	0.018	0.066	0.000	0.000	0.000	0.171	0.155	0.111	0.196	0.293	1.402
1967	0.225	0.069	0.262	0.289	0.107	0.001	0.042	0.080	0.062	0.121	0.174	0.287	1./18
1968	0.234	0.044	0.061	0.003	0.199	0.000	0.000	0.100	0.140	0.104	0.150	0.254	1 889
1970	0.000	0 112	0.154	0.000	0.123	0.248	0.000	0.099	0.129	0.159	0.201	0.251	1.688
1971	0.071	0.053	0.111	0.000	0.000	0.000	0.054	0.092	0.156	0.147	0.154	0.286	1.125
1972	0.079	0.135	0.362	0.184	0.128	0,100	0.000	0.161	0.152	0.097	0.185	0.000	1.584
1973	0.081	0.102	0.000	0.000	0.000	0.000	0.053	0.132	0.143	0.144	0.167	0.109	0.930
1974	0.283	0.053	0.032	0.000	0.000	0.000	0.106	0.122	0.131	0.157	0.178	0.273	1.334
1975	0.272	0.214	0.000	0.000	0.000	0.000	0.106	0.000	0.143	0.159	0.190	0.272	1.356
1976	0.240	0.074	0.257	0.000	0.000	0.000	0.095	0.136	0.161	0.159	0.143	0.041	1.307
1977	0.265	0.201	0.031	0.000	0,000	0.013	0.133	0.1/1	0.162	0.119	0.191	0.233	1.521
1978	0.200	0.005	0.214	0.052	0.100	0.000	0.139	0.035	0.155	0.130	0.128	0.233	1 235
1980	0 182	0.000	0.091	0.000	0.000	0.000	0.119	0.148	0.162	0.151	0.107	0.210	1.170
1981	0.138	0.038	0.181	0.141	0.249	0.184	0,065	0.058	0.162	0.141	0.194	0.251	1.801
1982	0.208	0.177	0.228	0.199	0.236	0.105	0.206	0.182	0.122	0,155	0.103	0.285	2.207
1983	0.136	0.131	0.220	0.265	0.131	0.000	0.114	0.196	0.151	0.000	0.152	0.222	1.719
1984	0.113	0.000	0.365	0.051	0.000	0.039	0.214	0.040	0.069	0.138	0.197	0.169	1.394
1985	0.128	0.262	0.159	0.190	0.040	0.144	0.000	0.143	0.141	0,158	0.156	0.265	1.787
1986	0.080	0.025	0.169	0.217	0.000	0.126	0.178	0.139	0.095	0.159	0.151	0.023	1,361
1987	0.210	0.255	0.000	0.134	0.000	0.000	0.133	0.167	0.031	0.158	0.151	0.134	1 891
1988	0.175	0.025	0.069	0.220	0.000	0.000	0.078	0.177	0.162	0.131	0.182	0.282	1.292
1990	0.203	0.162	0.069	0.000	0.000	0.000	0.229	0.167	0.075	0.159	0.198	0.256	1.519
1991	0.332	0.162	0.339	0.325	0.254	0.158	0.213	0.198	0.145	0.159	0.189	0.283	2.756
1992	0.291	0.269	0.048	0.277	0.135	0.000	0.184	0.192	0,146	0.130	0.151	0.273	2.097
1993	0.239	0.017	0.084	0.125	0.163	0.170	0.171	0.189	0.160	0.155	0.170	0.275	1.917
1994	0,106	0.293	0.129	0.133	0.000	0.000	0.050	0.126	0.161	0.156	0.174	0.280	1.607
1995	0.257	0.000	0.000	0.000	0.000	0.077	0.101	0.000	0.107	0.029	0.084	0.275	0.931
1996	0.206	0.105	0.219	0.000	0.000	0.000	0,138	0.166	0.162	0.125	0.197	0.087	1.405
1997	0.177	0.052	0.250	0.000	0.172	0.235	0.143	0.198	0.158	0.043	0.184	0.183	1.794
1998	0.102	0.083	0.000	0.000	0.000	0.000	0.083	0.005	0.124	0.004	0.155	0.250	1 236
2000 TAAA	0.256	0.062	0.030	0.332	0.000	0.111	0.140	0.106	0.142	0.122	0.194	0.263	1.814
2000	0.134	0.000	0.075	0.153	0.196	0.177	0.186	0.193	0.076	0.152	0.174	0.242	1.759
2002	0.188	0.330	0.257	0.219	0.086	0.169	0.230	0.187	0.048	0.150	0.203	0.217	2.285
2003	0.223	0.235	0.279	0.170	0.000	0.000	0.000	0.193	0.130	0.126	0.167	0.257	1.780
2004	0.201	0.235	0.082	0.096	0.290	0.078	0.066	0.171	0.140	0.156	0.174	0.250	1.939
2005	0.308	0.134	0.049	0.065	0.000	0.000	0.083	0.150	0.115	0.113	0.155	0.250	1.422
1				0.000	0.000	0.077	0.107		0.170	0.100	0.100	0.226	1 610
Average	0.204	0.137	0.128	0.096	0.070	0.077	0.105	0.144	0.128	0.125	0.169	0.228	1.613
Averago	31	30	31	31	28.25	51	30	31	30	51	51	50	303.25
(m3/s)	0.076	0.053	0.048	0.036	0.029	0.029	0.041	0.054	0.049	0.047	0.063	0.088	0.051

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	B	B1D16	dantian dan	anad in 10A	CmA3					
Vear	Oct	Nov	Dec	lan	Feb	igation der Mar	Apr	Mav	Jun	Jul	Aug	Sep	Total
1925	0.204	1.428	1.568	0.439	0.000	0.000	1.081	1.092	0.921	0.057	1.162	1.340	11.214
1926	2.268	1.526	1.946	0.000	1.236	0.852	0.657	0.600	0.909	0.674	0.828	1.498	12.994
1927	0.239	1.399	1.742	0.000	1.010	0.873	0.000	0.647	0.947	0.780	0.788	1.613	10.039
1928	2.070	1.196	1.520	1.436	0.000	0.000	0.679	0.992	0.514	0.750	0.818	1.392	11.366
1929	1.520	1.338	0.048	1.288	0.809	0.000	0.770	1.063	0.905	0.726	1.133	1.390	10.990
1930	2.283	1.482	0.000	0.847	0.282	0.000	0.000	1.109	0.920	0.000	1.195	1,480	9.599
1931	1.845	0.389	1.997	0.954	1.249	1.064	0.869	1.024	0.891	0.947	1.195	1.605	13.139
1932	1.704	2.142	1.510	0.000	0.355	0.000	0.715	1.034	0.542	0.898	1.005	1.516	9.855
1935	1.655	0.000	0 722	0.966	1.248	0.995	1.116	0.667	0.900	0.894	1.185	1.437	12,326
1935	1.835	2.449	2.067	1.325	0.000	0.000	0.637	0.473	0.684	0.656	1.124	1.303	12.553
1936	1.267	0.532	0.871	0.000	0.000	0.345	1.042	1.107	0.934	0.794	1.113	1.254	9.260
1937	1.919	2.100	0.452	0.418	1.562	1.126	0.000	0.937	0.563	0.887	1.105	0.876	11.946
1938	1.045	1.586	0.000	0.931	0.000	0.000	0.911	0.488	0.598	0.297	1.034	0.959	7.849
1939	1.831	0.000	0.266	1.712	1.056	0.000	0.093	0.960	0.217	0.923	0.937	0.842	8.836
1940	1.963	1.211	0.907	1.861	1.423	1.257	0.041	1.094	0.947	0.919	1.019	1.654	14.297
1941	1.642	1.875	1.527	1.095	1.996	0.000	0.979	0.421	0.654	0.766	0.855	0.923	12.734
1942	1.039	1.421	0.851	2.231	1.326	0.000	0.000	0.920	0,947	0.236	1 1 25	1.200	10.528
1943	2.058	1.095	1.798	1.132	0.000	0.402	0.964	1,109	0.301	0.947	1 134	1.545	17 311
1944	0.098	1.620	1 548	0.915	0.000	0.562	0.796	0.988	0.811	0.923	1.158	1.715	11.091
1945	1 827	1 713	2 211	1 867	0.000	0.399	0.090	0.927	0.719	0.873	1.195	1.456	13.276
1947	1.585	0.947	0.683	0.703	0.722	0.000	0.852	0.895	0.947	0.888	1.105	1.577	10.905
1948	0.573	1.488	2.139	0.000	0.493	0.926	0.896	0.509	0.679	0.730	1.171	1.365	10.970
1949	2.002	0.927	0.827	0.896	0.075	0.000	0.000	0.638	0.752	0.886	1.001	1.541	9.545
1950	2.169	1.378	0.000	1.341	2.182	0.139	0 278	0.000	0.944	0.887	0.888	1.018	11.225
1951	0.711	2.087	1.562	1.640	1.138	1.119	0.606	1.033	0.754	0.586	1.049	1.700	13.984
1952	1.793	0.710	0.552	0.000	0.000	0.000	0.000	1.011	0.947	0.705	1.011	1.595	8.325
1953	1.879	0.622	0.478	0.000	0.000	0.796	0.307	0.882	0.829	0.947	0.789	1.553	9.081
1954	1.536	0.588	0.782	0.000	0.000	0.000	0.290	0.736	0.643	0.796	1.16/	1.552	8.089
1955	1.061	0.355	1.538	1.020	0.000	0.000	0.946	0.505	0.545	0.268	0.740	1 222	10.202
1956	1.744	1,555	1.526	0.000	1 169	0.000	0.025	1.109	0.876	0.936	1.192	0.411	10.959
1958	1.546	1.486	0.356	0.353	0.191	0.853	1.188	1.088	0.927	0.649	1.189	1.473	11.299
1959	1.561	0.140	0.695	1.953	0.000	0.726	0.204	0.829	0.530	0.928	1.126	1.389	10.080
1960	1.925	0.294	0.000	2.057	0.000	0.000	0.000	0.955	0.481	0.502	0.765	1.342	8.322
1961	1.919	1.733	1.567	1.116	1.514	1.244	0.353	0.834	0.947	0.933	1.195	1.617	14.972
1962	2.076	0.448	0.578	1.663	1.697	1.265	0.514	0.736	0.354	0.725	1.120	1.557	12.732
1963	1.689	1.536	1.654	0.914	1.183	1.613	0.821	1.039	0.947	0.947	1.184	1.515	15.043
1964	1.001	1.515	0.000	0.168	1.242	1.399	0.914	1.088	0.876	0.927	1.043	1.199	11.3/1
1965	1.996	1.332	2.034	0.348	0.000	1.387	0.992	1.100	0.007	0.696	1 159	1.682	9 849
1966	1.209	0.911	1.9//	2 117	1.037	0.014	0.000	0.588	0.910	0.050	1.045	1.648	12.196
1968	1.575	0.670	0.829	0.531	1.529	0.000	0.357	1.073	0.832	0.813	1.130	1.360	10.751
1969	0.000	1.813	0.745	1.941	0.907	1.395	1.057	0.814	0.698	0.658	1.185	1.479	12.691
1970	1.504	1.051	1.352	0.000	1.121	1.418	0.000	0.612	0.779	0.947	1.184	1.459	11.427
1971	0.741	0.722	1.113	0.000	0.000	0.000	0.325	0.575	0.918	0.884	0.944	1.645	7.867
1972	0.785	1.178	2.480	1.549	1.150	0.627	0.000	0.936	0.895	0.623	1.105	0.000	11.328
1973	0.798	0.993	0.228	0.000	0.000	0.000	0.319	0.783	0.849	0.867	1.008	0.707	6.551
1974	1.886	0.722	0.658	0.330	0.000	0.067	0.594	0.732	0.787	0.933	1.068	1.575	9.551
1975	1.825	1.605	0.000	0.000	0.000	0.000	0.595	0.000	0.848	0.947	0.885	0.341	8 876
1976	1.058	1 537	0.655	0.000	0,000	0.146	0.330	0.988	0.947	0.740	1.134	1.367	10.250
1978	1 795	0.448	1.682	0.819	0.998	0.070	0.871	0.612	0.912	0.795	0.341	1.366	10.711
1979	0.924	1.029	0.807	0.522	0.000	0.465	0.816	1.029	0.947	0.873	0.804	0.827	9.044
1980	1.347	0.002	0.998	0.000	0.000	0.000	0.662	0.868	0.947	0.906	0.698	1.247	7.676
1981	1.109	0.635	1.500	1.315	1.798	1.076	0.378	0.398	0.947	0.851	1.148	1.461	12.618
1982	1.487	1.407	1.760	1.632	1.728	0.650	1.114	1.044	0.738	0.924	0.677	1.642	14.804
1983	1.100	1.156	1.714	1.990	1.163	0.000	0,636	1.117	0.892	0.000	0.934	1.311	12.012
1984	0.972	0.028	2.493	0.813	0.000	0.291	1.153	0.300	0.465	0.835	1.102	1.027	9.542
1985	1.056	1.860	1.564	1 728	0.007	0.002	0.970	0.821	0.600	0.941	0.924	0,237	9.807
1987	1.496	1.426	0.284	1.388	0.000	0.000	0.840	1.059	0.266	0.836	0.824	0.950	9.369
1988	0.099	1.830	1.733	1.744	0.000	1.335	0.659	0.965	0.512	0.913	1.010	1.595	12.394
1989	1.312	0.563	0.871	0.462	0.495	0.060	0.451	1.017	0.947	0.801	1.090	1.626	9.694
1990	1.461	1.323	0.874	0.140	0.435	0.000	1.232	0.964	0.493	0.947	1.172	1.490	10.532
1991	2.141	1.322	2.356	2.306	1.823	0.940	1.148	1.126	0.859	0.947	1.122	1.627	17.717
1992	1.928	1.899	0.755	2.054	1.186	0.000	0.999	1.096	0.865	0.796	0.926	1,578	14.081
1993	1.651	0,516	0.958	1.229	1.336	1.002	0.932	1.079	0.936	0.927	1.024	1.585	13.174
1994	0.937	2.025	1.214	1.268	0.402	0.026	0.299	0.755	0.941	0.928	1.044	1.014	453
1995	1.745	0.000	0.371	0.000	0.000	0.502	0.368	0.000	0.004	0.265	1.166	0 587	9 512
1007	1 201	0.713	1.709	0.000	1 384	1,349	0,789	1,126	0,926	0.337	1.100	1.101	12.024
1997	0.914	0.935	0.000	0.000	0.033	0.000	0.360	0.432	0.752	0.134	1.103	1.519	6.183
1999	1.750	0.884	0.649	0.000	0,362	0.000	0.476	0.879	0.705	0.705	0.946	1.457	8.812
2000	1.169	1.263	1.066	2.345	0.000	0.686	0.773	0.647	0.847	0.754	1.151	1.525	12.226
2001	1.090	0.000	0.907	1.383	1.515	1.042	1.013	1.098	0.500	0.911	1.046	1.413	11.918
2002	1.379	2.220	1.920	1.742	0.918	0.998	1.239	1.070	0.353	0.898	1.194	1.284	15.214
2003	1.564	1.718	2.037	1.477	0.000	0.000	0.000	1.099	0.783	0.774	1.007	1.495	11.955
2004	1.448	1.719	0.948	1.063	2.014	0.504	0.387	0.985	0.837	0.930	1.045	1,457	13.336
2005	2.015	1.171	0.757	0.889	0.362	0.000	0.475	0.879	0.705	0.705	0.940	1.45/	10.302
Average	1 425	1.143	1,135	0.893	0.637	0.461	0.585	0.843	0.770	0.764	1.021	1.336	11.040
Arelage	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	August and a												
(m3/s)	0.536	0.441	0.424	0.333	0.259	0.172	0.226	0.315	0.297	0.285	0.381	0.515	0.350

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	B	81D28								
Veee	0.4	Mary	Dec	Inn	Monthly in	rigation der Mar	nand in 10	6m^3 May	hum	Inl	Διισ	Sen	Total
Year 1925	0.204	0 180	0.274	Jan 0.066	0.000	0.000	0 166	0.202	0.186	0.046	0.150	0.009	1.305
1926	0.136	0.130	0.295	0.000	0.017	0.061	0.149	0.173	0.186	0.082	0.148	0.012	1.388
1927	0.000	0.048	0.181	0.000	0.131	0.084	0.096	0.200	0.186	0.152	0.108	0.002	1.189
1928	0.100	0.071	0.192	0.018	0.000	0.000	0.141	0.210	0.152	0.128	0.096	0.000	1.107
1929	0.000	0.000	0.054	0.033	0.000	0.000	0.000	0.193	0.175	0.134	0.148	0.000	0.736
1930	0.139	0.130	0.000	0.167	0.007	0.000	0.022	0.216	0.168	0.032	0.150	0.003	1.035
1931	0.020	0.003	0.269	0.093	0.000	0.000	0.065	0.125	0.175	0.158	0.140	0.003	1.174
1932	0.072	0.000	0.127	0.000	0.000	0.000	0.104	0.191	0.147	0.158	0.100	0.000	0.934
1934	0.000	0.000	0.243	0.306	0.060	0.122	0.171	0.159	0.186	0.158	0.150	0.000	1.555
1935	0.069	0.222	0.190	0.000	0.000	0.000	0.150	0.151	0.186	0.117	0.150	0.000	1.235
1936	0.142	0.070	0.224	0.000	0.000	0.000	0.117	0.216	0.186	0.158	0.150	0.000	1.264
1937	0.085	0.163	0.000	0.000	0.160	0.042	0.000	0.196	0.176	0.155	0.143	0.000	1.120
1938	0.049	0.190	0.000	0.065	0.000	0.000	0.148	0.146	0.164	0.084	0.138	0.000	0.983
1939	0.000	0.200	0.000	0.304	0.088	0.000	0.104	0.055	0.000	0.158	0.150	0.000	1.058
1940	0.024	0.000	0.004	0.123	0.187	0.000	0.000	0.162	0.155	0.125	0 150	0.000	1.469
1941	0.041	0.230	0.000	0.326	0.000	0.000	0.000	0.118	0.186	0.000	0.150	0.012	1.229
1943	0.142	0.136	0.350	0.083	0.000	0.103	0.171	0.216	0.156	0.158	0.150	0.012	1.677
1944	0.000	0.230	0.312	0.072	0.000	0.132	0.100	0.182	0.153	0.125	0.117	0.000	1.424
1945	0.000	0.084	0.303	0.000	0.000	0.000	0.126	0.213	0.182	0.143	0.150	0.012	1.212
1946	0.000	0.000	0.068	0.031	0.025	0.000	0.164	0.155	0.128	0.143	0.150	0.012	0.876
1947	0.060	0.171	0.061	0.048	0.065	0.000	0.147	0.216	0.186	0.146	0.150	0.000	1.251
1948	0.000	0.000	0.249	0.000	0.078	0.105	0.083	0.190	0.169	0.114	0.136	0.001	1.125
1949	0.120	0.002	0.000	0.188	0.000	0.000	0.008	0.148	0.177	0.158	0.148	0.012	1 225
1950	0.118	0.038	0.041	0.262	0.187	0.000	0.000	0.139	0.160	0.137	0.050	0.010	1.248
1951	0.000	0.135	0.200	0.072	0.000	0.000	0.000	0.215	0.186	0.147	0.150	0.006	0.826
1953	0.112	0.000	0.252	0.018	0.000	0.087	0.000	0.187	0.179	0.158	0.122	0.000	1.115
1954	0.004	0.000	0.000	0.049	0.000	0.000	0.101	0.150	0.180	0.157	0.150	0.012	0.803
1955	0.019	0.000	0.079	0.286	0.000	0.002	0.141	0.166	0.183	0.142	0.130	0.000	1.148
1956	0.122	0.172	0.052	0.000	0.000	0.000	0.121	0.183	0 164	0.118	0.133	0.000	1.066
1957	0.000	0.134	0.127	0.000	0.029	0.125	0.056	0.216	0.174	0.151	0.150	0.000	1.161
1958	0.094	0.076	0.060	0.000	0.000	0.021	0.142	0.216	0.186	0.124	0.150	0.005	1.075
1959	0.125	0.096	0.063	0.227	0.000	0.049	0.000	0.041	0.166	0.148	0.147	0.001	0.976
1960	0.066	0.137	0.115	0.062	0.058	0.000	0.000	0.216	0.180	0.158	0.131	0.000	1.124
1962	0.098	0.000	0.099	0.312	0.147	0.045	0.113	0.184	0.044	0.111	0.142	0.011	1.305
1963	0.058	0.120	0.101	0.146	0 164	0.110	0.125	0.188	0.186	0.158	0.148	0.000	1.505
1964	0.000	0.051	0.000	0.077	0.008	0.059	0.142	0.216	0.186	0.158	0.150	0.000	1.047
1965	0.123	0.114	0.270	0.000	0.000	0.130	0.148	0.204	0.155	0.158	0.108	0.003	1.412
1966	0.000	0.123	0.086	0.000	0.000	0.000	0.017	0.214	0.186	0.106	0.150	0.011	0.894
1967	0.053	0.076	0.132	0.155	0.011	0.125	0.099	0.154	0.125	0.158	0.147	0.001	0.899
1968	0.070	0.000	0.000	0.000	0.030	0.000	0.098	0.210	0.178	0.128	0.150	0.011	1.563
1909	0.079	0.163	0.000	0.000	0.169	0.018	0.077	0.191	0.131	0.158	0.150	0.000	1.135
1971	0.000	0,025	0.023	0.000	0.000	0.000	0.131	0.133	0.186	0.152	0.142	0.008	0.800
1972	0.000	0.084	0.235	0.157	0.081	0.000	0.035	0.187	0.186	0.145	0.150	0.000	1.259
1973	0.000	0.058	0.086	0.100	0.000	0.000	0.046	0.170	0,186	0.018	0.137	0.000	0.802
1974	0.120	0.019	0.133	0.000	0.000	0.118	0.019	0.164	0.168	0.158	0.150	0.012	1.061
1975	0.138	0.107	0.000	0.000	0.000	0.000	0.090	0.086	0.185	0.158	0.150	0.000	1 228
1976	0.072	0.036	0.269	0.000	0.000	0.000	0.000	0.202	0.185	0.156	0.149	0.012	0.932
1978	0.000	0.000	0.000	0.060	0.000	0.000	0.099	0.153	0.186	0.147	0.000	0.010	0.655
1979	0.000	0.095	0.006	0.000	0.000	0.000	0.082	0.210	0.186	0.158	0.141	0.000	0.878
1980	0.026	0.000	0.011	0.000	0.000	0.000	0.152	0.201	0.186	0.158	0.127	0.000	0.861
1981	0.000	0.012	0.197	0.232	0.141	0.088	0.089	0.161	0.178	0.158	0.150	0.012	1.417
1982	0.081	0.098	0.218	0.189	0.187	0.000	0.165	0.198	0.165	0.154	0.123	0.011	1.590
1983	0.053	0.000	0.168	0.079	0.126	0.000	0.101	0.216	0,165	0.000	0.150	0,000	0.850
1984	0.000	0.000	0.178	0.000	0.000	0.000	0.132	0.108	0.145	0.158	0.135	0.000	1.227
1986	0.072	0.019	0.069	0.190	0.026	0.000	0.167	0.165	0,180	0.158	0.046	0.000	1.091
1987	0.000	0.156	0.000	0.143	0.000	0.000	0.160	0.213	0.147	0.158	0.124	0.000	1.099
1988	0.000	0.170	0.202	0.264	0.000	0.080	0.149	0.188	0.150	0.157	0.150	0.012	1.523
1989	0.000	0.000	0.010	0.107	0.116	0.000	0.083	0.216	0.186	0.147	0.148	0.012	1.025
1990	0.000	0.051	0.040	0.078	0.000	0.000	0.162	0.204	0.118	0.158	0.150	0.009	0.970
1991	0.134	0.042	0.252	0.141	0.153	0.000	0.139	0.216	0.153	0.158	0.143	0.012	1.543
1992	0.138	0.101	0.029	0.196	0.041	0.000	0.116	0.211	0.186	0.149	0.146	0.012	1.325
1993	0.050	0.000	0.000	0.052	0.177	0.029	0.100	0.136	0.186	0.158	0.139	0.003	1.053
1994	0.000	0.208	0.221	0.000	0.000	0.000	0.115	0.123	0.174	0.024	0.140	0.000	0.892
1996	0.009	0.008	0.294	0.000	0.000	0.000	0.074	0.166	0.186	0.158	0.144	0.000	1.040
1997	0.072	0.000	0.289	0.077	0.177	0.117	0.129	0.216	0.186	0.150	0.142	0.000	1.554
1998	0.000	0.010	0.000	0.023	0.000	0.000	0.061	0.180	0.186	0.140	0.145	0.012	0.757
1999	0.000	0.000	0.011	0.000	0.000	0.000	0.006	0.207	0.124	0.147	0.149	0.004	0.650
2000	0.043	0.004	0.201	0.262	0.000	0.000	0.117	0.197	0.172	0.155	0.149	0.012	1.312
2001	0.000	0.000	0.000	0.000	0.180	0.124	0.026	0.209	0.167	0.158	0.150	0.000	1.013
2002	0.099	0.206	0.109	0.067	0.000	0.012	0.159	0.215	0.127	0.158	0.130	0.000	1.503
2003	0.051	0.085	0.123	0.067	0.000	0.100	0.117	0.212	0.186	0.155	0.150	0.012	1.382
2004	0.134	0.000	0.253	0.051	0,000	0.000	0.137	0.182	0.153	0.125	0.117	0.000	1.152
anadi.	1000	91		-									
Average	0.055	0.075	0.119	0.089	0.043	0.029	0.094	0.184	0.167	0.137	0.138	0.005	1.132
0.191	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	0.000	0.000	0.044	0.000	0.010	0.044	0.020	0.050	0.054	0.051	0.053	0.000	0.036
(m3/s)	0.021	0.029	0.044	0.033	0.018	0.011	0.036	0.069	0.064	0.051	0.052	0.002	0.050

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	E	881E20		11.40						
Vor	04	Nou	Dor	lan	Monthly in	rrigation der	nand in 10	^6m^3 May	lun	Int	Aug	Sen	Total
1925	0.204	0.854	0.905	0.406	0.000	0.258	0.493	0.408	0.379	0.085	0.442	0.664	5.438
1926	0.848	0.721	0.960	0.125	0.359	0.489	0.445	0.331	0.378	0.178	0.438	0.672	5.945
1927	0.158	0.512	0.671	0.212	0.660	0,551	0.303	0.403	0.379	0.365	0.327	0.644	5.184
1928	0.748	0.568	0.698	0.292	0.000	0.000	0.424	0.428	0.289	0.299	0.295	0.610	4.651
1929	0.464	0.231	0.365	0.327	0.015	0.137	0.000	0.383	0.349	0.315	0.436	0.578	3.599
1930	0.858	0.722	0.000	0.651	0.335	0.202	0.110	0.444	0.331	0.049	0.442	0.648	4.794
1931	0.530	0.338	0.426	0.000	0.502	0.478	0.452	0.444	0.379	0.380	0.432	0.648	5.280
1933	0.769	0.000	0.538	0,097	0.020	0.095	0.323	0.377	0.275	0.380	0.308	0.534	3.715
1934	0.619	0.449	0.556	0,590	0.394	0.370	0.451	0.401	0.379	0.380	0.442	0.583	5.613
1935	0.754	0.934	0.968	0.352	0.131	0.000	0.409	0.242	0.343	0.284	0.402	0.659	5.477
1936	0.589	0.540	0.687	0.444	0.000	0.086	0.473	0.433	0.369	0.370	0.407	0.528	4.926
1937	0.706	0.809	0.085	0.000	0.739	0.438	0.000	0.391	0.350	0.371	0.424	0.233	4.546
1956	0.807	0.880	0.081	0.403	0.359	0.000	0.000	0.266	0.000	0.380	0.408	0.118	3.461
1940	0.665	0.576	0.396	0.645	0.660	0.315	0.304	0.444	0.379	0.364	0.430	0.657	5.835
1941	0.715	0.747	0.721	0.383	0.667	0.000	0.441	0.248	0.299	0.261	0.141	0.505	5.129
1942	0.599	0.591	0.591	0.782	0.034	0.094	0.000	0.142	0.379	0.060	0.345	0.608	4.225
1943	0.822	0.390	0.896	0.545	0.000	0.393	0.436	0.441	0.230	0.380	0.442	0.651	5.627
1944	0.247	0.809	0.989	0.447	0.608	0.400	0.190	0.426	0.379	0.326	0.422	0.673	5.916
1945	0.556	0 582	0.599	0.000	0.147	0.455	0.376	0.396	0.336	0.344	0.429	0.652	5 451
1946	0.778	0.747	0.981	0.301	0.435	0.000	0.232	0.425	0.377	0.339	0.437	0.655	5.132
1948	0.386	0.653	0.785	0.000	0.162	0.192	0.290	0.379	0.316	0.262	0.425	0.614	4.465
1949	0.819	0.426	0.598	0.259	0.179	0.431	0.000	0.358	0.364	0.375	0.410	0.646	4.867
1950	0.856	0.746	0.173	0.628	0.801	0.000	0.167	0.058	0.379	0.369	0.398	0.485	5.060
1951	0.259	0.835	0.885	0.299	0.172	0.502	0.309	0.412	0.205	0.335	0.432	0.659	5.305
1952	0.537	0.527	0.486	0.450	0.121	0.044	0.000	0.436	0.379	0.204	0.395	0.644	4.222
1953	0.710	0.426	0.402	0.000	0.104	0.347	0.014	0.512	0.362	0.380	0.297	0.625	4.088
1955	0.624	0.345	0.099	0.742	0.000	0.000	0.380	0.227	0.369	0.339	0.439	0.405	3.969
1956	0.670	0.645	0.647	0.125	0.000	0.171	0.093	0.177	0.274	0.244	0.325	0.497	3.868
1957	0.391	0.650	0.245	0.032	0.050	0.512	0.220	0.430	0.353	0.379	0.416	0.335	4.014
1958	0.564	0.707	0.000	0.019	0.184	0.343	0.476	0.375	0.366	0.289	0.436	0.627	4.387
1959	0.681	0.689	0.284	0.737	0.000	0.262	0.000	0.388	0.163	0.370	0.438	0.619	4.632
1960	0.711	0.153	0.000	0.519	0.000	0.074	0.175	0.434	0.045	0.320	0.343	0.634	5.295
1962	0.782	0.676	0.323	0.235	0.545	0.235	0.163	0.169	0.131	0.357	0.442	0.649	4.773
1963	0.616	0.879	0.563	0.297	0.182	0,608	0.380	0.418	0.374	0.380	0.400	0.665	5.760
1964	0.371	0.320	0.380	0.424	0.407	0.469	0.232	0.441	0.301	0.380	0.410	0.567	4.703
1965	0.769	0.536	0.658	0.285	0.000	0.508	0.382	0.424	0.332	0.379	0.401	0.481	5.156
1966	0.556	0.724	0.478	0.248	0.000	0.055	0.043	0,436	0.334	0.324	0.429	0.658	4.285
1967	0.635	0.136	0.754	0.891	0.369	0.429	0.119	0.154	0.297	0.358	0.412	0.662	5.21/
1968	0.543	0.693	0.412	0,532	0.392	0.518	0.266	0.400	0.281	0.373	0.438	0.657	5.758
1970	0.493	0.413	0.215	0.000	0.408	0.439	0.076	0.330	0.332	0.380	0.440	0.565	4.092
1971	0.359	0.381	0.439	0.000	0.000	0.000	0.375	0.238	0.373	0.368	0.414	0.648	3.596
1972	0.270	0.628	0.724	0.689	0.492	0.179	0.115	0.373	0.343	0.282	0.434	0.243	4.773
1973	0.090	0.676	0.000	0.000	0.000	0.000	0.114	0.286	0.371	0.286	0.407	0.316	2.545
1974	0.831	0.000	0.427	0.337	0.000	0.184	0.179	0.265	0.341	0.380	0.413	0.665	4.023
1975	0.733	0.700	0.029	0.000	0.000	0.000	0.022	0.000	0.322	0.380	0.451	0.645	3 791
1978	0.568	0.720	0.212	0.000	0.000	0.233	0.325	0.408	0.364	0.269	0.430	0.633	4.161
1978	0.667	0.253	0.804	0.546	0.242	0.000	0.257	0.348	0.357	0.363	0.259	0.627	4.724
1979	0.526	0.500	0.495	0.428	0.000	0.231	0.298	0.422	0.379	0.351	0.381	0.420	4.430
1980	0.589	0.066	0.701	0.040	0.000	0.000	0.457	0.226	0.379	0.358	0.390	0.520	3.727
1981	0.589	0.231	0.680	0.537	0.170	0.671	0.281	0.129	0.379	0.367	0.436	0.661	5.131
1982	0.649	0.797	0.760	0.498	0.772	0.228	0.481	0.377	0.334	0.545	0.201	0.672	5 472
1983	0.359	0.431	0.899	0.285	0.090	0.000	0.484	0.175	0.325	0.356	0.435	0.009	3.858
1985	0.483	0.880	0.397	0.788	0.195	0.559	0.000	0.414	0.376	0.380	0.352	0.590	5.415
1986	0.474	0.179	0.362	0.619	0.252	0.440	0.369	0.358	0.349	0.380	0.399	0.425	4.606
1987	0.587	0.616	0.000	0.491	0,000	0.058	0.301	0.419	0.096	0.380	0.230	0.543	3.721
1988	0.004	0.769	0.763	1.016	0.167	0.534	0.417	0.418	0.211	0.369	0.437	0.658	5.761
1989	0.411	0.248	0.294	0.255	0.341	0.190	0.323	0.439	0.379	0.370	0,439	0.673	4.362
1990	0.612	0.421	0.550	0.000	0,100	0.000	0.505	0.300	0.209	0.380	0.287	0.673	5.718
1992	0.804	0.584	0.120	0.789	0.000	0.277	0.473	0.419	0.322	0.322	0.415	0.673	5.199
1993	0.646	0.198	0.564	0.455	0.501	0.526	0.386	0.437	0.379	0.380	0.408	0.652	5.535
1994	0.737	0.649	0.641	0.650	0.000	0.145	0.109	0.171	0.369	0.379	0.395	0.654	4.899
1995	0.635	0.422	0.727	0.000	0.000	0.492	0.221	0.167	0.331	0.097	0.361	0.626	4.080
1996	0.689	0.442	0.662	0.271	0 198	0.033	0.402	0.387	0.379	0.356	0.442	0.342	4.602
1997	0.551	0.485	0.877	0.181	0.601	0.465	0.395	0.444	0.379	0.316	0.380	0.613	3.676
1000 1998	0.494	0.347	0.201	0.000	0.988	0.000	0.355	0.366	0.351	0.380	0.442	0.633	4.459
2000	0.593	0.417	0.561	0.903	0.000	0.122	0.162	0.356	0,357	0.337	0.440	0.605	4.852
2001	0.738	0.079	0.046	0.528	0.753	0.585	0.382	0.354	0.170	0.380	0.409	0.619	5.044
2002	0.556	0.844	0.760	0.723	0.459	0.113	0.465	0.425	0.303	0,378	0.435	0.592	6.054
2003	0.500	0.841	0.081	0.498	0.242	0.000	0.476	0.444	0.300	0.356	0.395	0.633	4.767
2004	0.672	0.830	0.392	0.744	0.621	0.502	0.441	0.426	0.364	0.362	0.336	0.673	6.363
2005	0.838	0.423	0.404	0.453	0.211	0.086	0.397	0.338	0.274	0.276	0.336	0.563	4.598
Average	0.599	0.524	0.501	0.384	0.248	0.234	0.281	0.350	0.317	0.325	0.397	0.571	4.734
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average													
(m3/s)	0.224	0.202	0.187	0.143	0.102	0.087	0.108	0.131	0.122	0.121	0.148	0.220	0.150

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	В	81E23								
Mara	0-1	N	Dec	lan	Monthly in	rigation der	nand in 10 ⁴	^6m^3 May	hun	1.1	Δυσ	Son	Total
1925	0.204	0.410	0.454	0.252	0.004	0.174	0.264	0.229	0.199	0.081	0.228	0.307	2.874
1926	0.387	0.360	0.474	0.134	0.213	0.262	0.246	0.200	0.199	0.116	0.226	0.310	3.127
1927	0.121	0.280	0.364	0.172	0.328	0.285	0.193	0.227	0.199	0.185	0.185	0.299	2.838
1928	0.350	0.302	0.375	0.205	0.000	0.000	0.238	0.237	0.166	0.161	0.173	0.287	2.493
1929	0.242	0.167	0.242	0.220	0.074	0.126	0.037	0.220	0.188	0.166	0.225	0.275	2.184
1930	0.391	0.361	0.000	0.549	0.204	0.152	0.161	0.151	0.181	0.191	0.223	0.301	2.805
1932	0.321	0.265	0.267	0.000	0.268	0.258	0.249	0.243	0.199	0.191	0.222	0.301	2.782
1933	0.358	0.000	0.312	0.122	0.076	0.110	0.200	0.218	0.161	0.191	0.178	0.258	2.183
1934	0.181	0.131	0.424	0,482	0.256	0.325	0.268	0.186	0.199	0.191	0.228	0.260	3.131
1935	0.318	0.452	0.373	0.000	0.000	0.000	0.248	0.179	0.199	0.150	0.228	0.169	2.314
1936	0.394	0.301	0.406	0.131	0.000	0.125	0.214	0.245	0.199	0.191	0.228	0.144	2.451
1937	0.297	0.393	0.122	0.251	0.000	0.076	0.245	0.174	0.177	0.117	0.215	0.261	2,354
1939	0.203	0.430	0.000	0.480	0.284	0.000	0.200	0.085	0.012	0.191	0.228	0.248	2.360
1940	0.272	0.155	0.194	0.306	0.385	0.121	0.048	0.209	0.166	0.158	0.194	0.276	2.485
1941	0.289	0.460	0.093	0.301	0.385	0.000	0.268	0.243	0.199	0.191	0.228	0.310	2.965
1942	0.394	0.371	0.340	0.501	0.155	0.000	0.000	0.146	0.199	0.001	0.228	0.310	2.643
1943	0.394	0.360	0.527	0.268	0.104	0.306	0.208	0.243	0.166	0.151	0.194	0.276	3.060
1945	0.248	0.314	0.482	0.000	0.035	0.069	0.223	0.239	0.194	0.176	0.228	0.310	2,519
1946	0.217	0.223	0,256	0.218	0.221	0.008	0.262	0.182	0.143	0.175	0.228	0.310	2.443
1947	0.309	0.401	0.249	0.234	0.261	0.000	0.245	0.243	0.199	0.179	0.228	0.287	2.833
1948	0.117	0.206	0.430	0.000	0.274	0.308	0.179	0.217	0.182	0.147	0.214	0.298	2.571
1949	0.371	0.234	0.097	0.369	0.168	0.185	0.104	0.175	0.190	0.191	0.226	0.310	2.622
1951	0.568	0.270	0.446	0.257	0.237	0.105	0.180	0.239	0.155	0.154	0.225	0.308	2.852
1952	0.254	0.346	0.118	0.149	0.046	0.159	0.076	0.242	0.199	0.180	0.228	0.303	2.300
1953	0.363	0.160	0.433	0.205	0,135	0.288	0.000	0.214	0.192	0.191	0.199	0.286	2.665
1954	0.252	0.000	0.165	0.235	0.041	0.099	0.198	0.178	0.193	0.190	0.228	0.310	2.088
1955	0.267	0.175	0.266	0.463	0.000	0.202	0.238	0.194	0.196	0.174	0.208	0.154	2.537
1955	0.372	0.402	0.241	0.000	0.000	0.329	0.153	0.243	0.187	0.183	0.228	0.265	2.672
1958	0.343	0.307	0.248	0,000	0.069	0.221	0.240	0.242	0.199	0.157	0.228	0.302	2.556
1959	0.376	0.327	0.251	0.406	0.000	0.250	0.033	0.072	0.179	0.180	0.225	0.309	2.609
1960	0.384	0.159	0.000	0.378	0.000	0.068	0.155	0.220	0.111	0.186	0.223	0.235	2.119
1961	0.315	0.368	0.301	0.248	0.254	0.087	0.066	0.243	0.193	0.191	0.209	0.288	2.761
1962	0.347	0.141	0.285	0.488	0.344	0.245	0.209	0.211	0.081	0.191	0.226	0.294	3.293
1964	0.193	0.283	0.157	0.262	0.204	0.260	0.239	0.242	0.199	0.191	0.228	0.243	2.700
1965	0.373	0.344	0.450	0.052	0.002	0.334	0.245	0.231	0.168	0.191	0.185	0.300	2.875
1966	0,243	0.353	0.273	0.000	0.000	0.190	0.114	0.240	0.198	0.140	0.228	0.310	2.290
1967	0.302	0.307	0.317	0.338	0.207	0.329	0.195	0.181	0.138	0.190	0.225	0.309	3.038
1968	0.319	0.215	0.105	0.186	0.232	0.000	0.194	0.243	0.199	0.176	0.228	0.271	3,190
1970	0.328	0.393	0.182	0.085	0,366	0.218	0.174	0.217	0.145	0.191	0.227	0.268	2.794
1971	0.232	0.257	0.212	0.000	0.006	0.000	0.228	0.161	0.199	0.184	0.220	0.305	2.005
1972	0.224	0.315	0.416	0.339	0.277	0.080	0.131	0.214	0.199	0.177	0.228	0.000	2.599
1973	0.235	0.290	0.273	0.284	0.000	0.121	0.143	0.197	0.199	0.054	0.214	0.156	2.167
1974	0.370	0.251	0.318	0.047	0.074	0.321	0.116	0.191	0.181	0.191	0.228	0.309	2.555
1975	0.320	0.270	0.449	0.045	0.000	0,076	0.258	0.229	0.199	0.191	0.219	0.090	2.346
1977	0.371	0.327	0.141	0.073	0.137	0.000	0.052	0.240	0.197	0.188	0.227	0.310	2.262
1978	0.203	0.149	0.125	0.245	0.166	0.200	0.195	0.180	0.199	0.180	0.040	0.308	2.191
1979	0.184	0.326	0.196	0.182	0.000	0.119	0.178	0.237	0.199	0.190	0.219	0.122	2.152
1980	0.274	0.064	0.201	0.000	0.108	0.048	0.249	0.227	0.199	0.191	0.204	0.310	3.187
1982	0.331	0.329	0.400	0.370	0.384	0.016	0.263	0.224	0.178	0.186	0.200	0.309	3.191
1983	0.301	0.120	0.352	0.264	0.323	0.076	0.198	0.243	0.179	0.023	0.213	0.188	2.479
1984	0.050	0.224	0.362	0.000	0.049	0.090	0.250	0.137	0.157	0.151	0.227	0.283	1.981
1985	0.112	0.309	0.299	0.414	0.171	0.310	0.000	0.241	0.199	0.191	0.212	0.287	2.745
1986	0.321	0.251	0.049	0.370	0.222	0.012	0.257	0.239	0.152	0.191	0.201	0.265	2.329
1988	0.138	0.400	0.385	0.442	0.120	0.281	0.247	0.215	0.164	0.189	0.228	0.310	3.119
1989	0.151	0.003	0.200	0.290	0.312	0.039	0.179	0.243	0.199	0.179	0.226	0.310	2.331
1990	0.227	0.282	0.229	0.263	0.108	0.081	0.259	0.230	0.132	0.191	0.228	0.307	2.538
1991	0.385	0.273	0.432	0.323	0.349	0.140	0.236	0.243	0.167	0.191	0.221	0.310	3.271
1992	0.389	0.332	0.219	0.375	0.237	0.197	0.213	0.237	0.199	0.181	0.224	0.310	2.878
1993	0.299	0.438	0.403	0.160	0.144	0.189	0.087	0.164	0.199	0.191	0.217	0.301	2.712
1995	0.280	0.299	0.397	0.053	0.000	0.069	0.212	0.151	0.187	0.060	0.217	0.291	2.218
1996	0.258	0.240	0.473	0.057	0.000	0.129	0.170	0.194	0.199	0.190	0.222	0.211	2.342
1997	0.321	0.104	0.468	0.262	0.374	0.319	0.226	0.243	0.199	0.183	0.219	0.291	3.208
1998	0.245	0.243	0.113	0.210	0.173	0.077	0.157	0.207	0.199	0.172	0.223	0.310	2.329
3000 1322	0.291	0.222	0.383	0.439	0.000	0.184	0.214	0.224	0.185	0.188	0.227	0.310	2.882
2001	0.131	0.000	0.104	0.123	0.377	0.327	0.122	0.236	0.180	0.190	0.228	0.198	2.216
2002	0.349	0.436	0.295	0.252	0.170	0.212	0.256	0.243	0.141	0.191	0.228	0.289	3.061
2003	0.299	0,355	0.338	0.365	0.000	0.000	0.156	0.242	0.172	0.187	0.219	0.307	2.639
2004	0.333	0.315	0.308	0.252	0.289	0.302	0.214	0.238	0.199	0.187	0.227	0.310	3.1/6
2005	0.385	0.203	0,434	0.23/	0,121	0.075	0.234	0.209	0.100	0.130	0.134	5.275	2.030
Average	0.279	0.281	0.283	0.228	0.161	0.156	0.183	0.211	0.180	0.169	0.215	0.272	2.617
22	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	0		0.000	0.005	0.000	0.070	0.070	0.070	0.050	0.000	0.000	0 105	0.000
(m3/s)	U.104	0.108	0.106	0.085	0.066	0.058	0.070	0.079	0.069	0.063	0.080	0.105	0.083

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	B	B1E30	instian dar	mand in 10/	CmA2					
Vear	Oct	Nov	Dec	lan	Feh	ngation der Mar	nand in 10 [,] Anr	Mav	Jun	Jul	Aug	Sep	Total
1925	0.204	0.339	0.369	0.130	0.000	0.087	0.232	0.203	0.181	0.028	0.199	0.259	2.221
1926	0.341	0.275	0.396	0.000	0.127	0.198	0.209	0.166	0.180	0.073	0.197	0.262	2.425
1927	0.009	0.174	0.256	0.036	0.273	0.228	0.141	0.201	0.181	0.162	0.144	0.249	2.052
1928	0.293	0.201	0.269	0.075	0.000	0.000	0.199	0.213	0.137	0.131	0,129	0.232	1.879
1929	0.156	0.039	0.109	0.092	0.000	0.028	0.000	0.191	0.166	0.138	0.196	0.217	1.332
1930	0,346	0.275	0.000	0.248	0.116	0.060	0.048	0.221	0.158	0.011	0.199	0.251	1.932
1931	0.188	0.119	0.363	0.161	0.071	0.107	0.101	0.103	0.164	0.169	0.194	0.257	1.998
1932	0.255	0.156	0.138	0.000	0.196	0.193	0.212	0.221	0.181	0.169	0.191	0.251	1 473
1933	0.303	0.000	0.192	0.000	0.000	0.008	0.150	0.188	0.151	0.169	0.133	0.190	2,258
1935	0.296	0.377	0.400	0 104	0.017	0.000	0.192	0.123	0.163	0.124	0.180	0.256	2.231
1936	0.217	0.188	0.264	0.148	0.000	0.004	0.222	0.215	0.176	0.165	0.182	0.193	1.974
1937	0.273	0.317	0.000	0.000	0.310	0.174	0.000	0.195	0.167	0.165	0.190	0.051	1.842
1938	0.225	0.352	0.000	0.128	0.000	0.000	0.208	0.132	0.152	0.075	0.183	0.199	1.654
1939	0.331	0.000	0.073	0.286	0.127	0.000	0.000	0.134	0.000	0.169	0.183	0.000	1.304
1940	0.253	0.205	0.124	0.245	0.273	0.114	0.141	0.221	0.181	0.162	0,193	0.255	2.366
1941	0.277	0.288	0.281	0.119	0.276	0.000	0.207	0.126	0.142	0.112	0.055	0.182	2.064
1942	0.221	0.212	0.218	0.311	0.000	0.007	0.000	0.074	0.181	0.016	0.155	0.232	2 211
1943	0.329	0.115	0.365	0.197	0.000	0.152	0.205	0.219	0.109	0.169	0.199	0.252	2.511
1944	0.052	0.317	0.222	0.130	0.247	0.193	0.176	0.207	0.160	0.152	0.193	0.253	1.977
1946	0.307	0.287	0.406	0.079	0.119	0.117	0.107	0.197	0.003	0.153	0.199	0.207	2.181
1947	0.319	0.221	0.127	0.095	0.164	0.000	0.149	0.211	0.180	0.150	0.197	0.254	2.065
1948	0.119	0.242	0.311	0.000	0.032	0.055	0.134	0.189	0.150	0.113	0.191	0.235	1.771
1949	0.327	0.133	0.221	0.059	0.040	0.170	0.000	0.179	0.174	0.167	0.184	0 250	1.904
1950	0.345	0.287	0.016	0.237	0.340	0.000	0.076	0.034	0.181	0.164	0.178	0.173	2.030
1951	0.057	0.330	0.360	0.078	0.037	0.204	0.144	0.205	0.097	0.148	0.194	0.256	2.111
1952	0.191	0.181	0.167	0.151	0.012	0.000	0.000	0.217	0.181	0.085	0.176	0.249	1.611
1953	0.275	0.133	0.127	0.000	0.004	0.130	0.002	0.157	0.173	0.169	0.130	0.242	1.541
1954	0.304	0.260	0.061	0.000	0.000	0.000	0.149	0.207	0.095	0.149	0.185	0.240	1.651
1955	0.255	0.094	0.000	0.292	0.000	0.000	0.178	0.091	0.170	0.104	0.137	0.178	1.470
1957	0.233	0.238	0.051	0.000	0.000	0.209	0.101	0.214	0.168	0.169	0.145	0.100	1.561
1958	0.204	0.268	0.000	0.000	0.043	0.128	0.224	0.187	0.174	0.126	0.196	0.241	1.791
1959	0.261	0.259	0.070	0.290	0.000	0.089	0.000	0.193	0.077	0.165	0.197	0.237	1.837
1960	0 275	0.001	0.000	0.185	0.000	0.000	0.079	0.215	0.020	0.141	0.152	0.254	1.321
1961	0.309	0.253	0.278	0.079	0.121	0.075	0.029	0.177	0.181	0.165	0.199	0.239	2.106
1962	0.329	0.008	0.089	0.279	0.237	0.081	0.073	0.087	0.061	0.158	0.199	0.251	1.854
1963	0.229	0.351	0.204	0.077	0.042	0.255	0.178	0.208	0.178	0.169	0.179	0.259	2.330
1964	0.111	0.082	0.116	0.139	0.151	0.188	0.107	0.219	0.143	0.169	0.184	0.212	1.820
1965	0.303	0.186	0.250	0.072	0.000	0.207	0.179	0.211	0.150	0.103	0.180	0.256	1.676
1960	0.201	0.270	0.296	0.364	0.000	0.169	0.052	0.080	0.141	0.159	0.185	0.257	2.075
1968	0.242	0.000	0.131	0.191	0.239	0.000	0.123	0.199	0.163	0.166	0.197	0.195	1.846
1969	0.066	0.261	0.185	0.381	0.094	0.212	0.216	0.181	0.134	0.148	0.197	0.255	2.329
1970	0.170	0.126	0.037	0.000	0 151	0.174	0.031	0.165	0.158	0.169	0.198	0.211	1.591
1971	0.105	0.111	0.145	0.000	0.000	0.000	0.175	0.121	0.178	0.164	0.186	0.251	1.435
1972	0.062	0.230	0.282	0.266	0.191	0.049	0.051	0.186	0.163	0.122	0.195	0.056	1.855
1973	0.000	0.253	0.000	0,000	0.000	0.000	0.050	0.144	0.177	0.124	0.182	0.091	1.022
1974	0.333	0.000	0.139	0.097	0.000	0.051	0.081	0.154	0.162	0.169	0.165	0.259	1 377
1975	0.280	0.205	0.000	0.000	0.000	0.000	0.202	0.217	0.180	0.169	0.150	0.027	1.531
1977	0.206	0.274	0.035	0.000	0.000	0.074	0.151	0.203	0.173	0.116	0.193	0.244	1.671
1978	0.254	0.049	0.321	0.198	0.071	0.000	0.119	0.174	0.170	0.161	0.111	0.241	1.869
1979	0.186	0,168	0.172	0.141	0.000	0.074	0.138	0.210	0.181	0.155	0.170	0.141	1.735
1980	0.217	0.000	0.271	0.000	0.000	0.000	0.215	0.115	0.181	0.159	0.174	0.189	1.520
1981	0.216	0.039	0.261	0.193	0.036	0.286	0.130	0.068	0.181	0.163	0.196	0.257	2.026
1982	0.245	0.312	0.299	0.174	0.326	0.072	0.227	0.188	0.159	0.153	0.112	0.262	2.530
1983	0.264	0.164	0.351	0.323	0.239	0.022	0.115	0.221	0.175	0.000	0.105	0.165	1 510
1984	0.105	0.351	0.300	0.072	0.000	0.000	0.228	0.090	0.179	0.169	0.156	0.223	2.169
1985	0.161	0.014	0.108	0.233	0.076	0.174	0.172	0.179	0.166	0.169	0.178	0.144	1.774
1987	0.215	0.224	0.000	0.171	0.000	0.000	0.140	0.208	0.045	0.169	0.098	0.200	1.470
1988	0.000	0.298	0.301	0.424	0.035	0.220	0.196	0.208	0.100	0.164	0.197	0.255	2.396
1989	0.130	0.047	0.075	0.057	0.118	0.054	0.151	0,218	0.181	0.165	0.198	0.263	1.656
1990	0.227	0.130	0.188	0.000	0.034	0.000	0.237	0.180	0.133	0.169	0.199	0.263	1.761
1991	0.346	0.193	0.270	0.234	0.142	0.024	0.224	0.221	0,099	0.169	0.125	0.263	2.310
1992	0.320	0.209	0.000	0.314	0.000	0.096	0.222	0.208	0.153	0.142	0.186	0.263	2.115
1993	0.244	0.023	0.205	0.154	0.196	0.216	0.181	0.217	0.181	0.169	0.183	0.253	2.221
1994	0.288	0.240	0.242	0.248	0.000	0.032	0.047	0.088	0.170	0.034	0.177	0.234	1.500
1995	0.259	0.131	0.253	0.065	0.000	0.200	0.101	0.193	0.181	0.158	0.199	0 104	1.794
1997	0.198	0.161	0.355	0.022	0.244	0.186	0.185	0.221	0.181	0.139	0.169	0.234	2.295
1998	0.170	0.212	0.030	0.000	0.000	0.000	0.156	0.187	0.155	0.083	0.197	0.262	1.452
1999	0.223	0.094	0.030	0.000	0.431	0.000	0 067	0.183	0.167	0.169	0.199	0.243	1.806
2000	0.218	0.128	0.203	0.370	0.000	0.021	0.073	0.178	0.170	0.149	0.198	0.230	1.938
2001	0.288	0.000	0.000	0.189	0.317	0.245	0.179	0.177	0.080	0.169	0.183	0.237	2.064
2002	0.201	0.334	0.300	0.283	0.175	0.017	0.219	0.211	0.144	0.169	0.196	0.224	2.471
2003	0.174	0.333	0.000	0.174	0.071	0.000	0.224	0.221	0.143	0.158	0.177	0.244	1.917
2004	0.256	0.327	0.122	0.293	0.254	0.204	0.207	0.212	0.173	0.151	0.148	0.263	2.621
2005	0.33/	0.151	0.178	0,153	0.056	0.004	0.180	0.103	0.150	0.119	0.146	0.210	1.770
Average	0.224	0.183	0.181	0.135	0.090	0.085	0.130	0.175	0.151	0.143	0.178	0.215	1.890
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average													
(m3/s)	0.084	0.071	0.068	0.050	0.037	0.032	0.050	0.065	0.058	0.053	0.066	0.083	0.060

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	В	81F01		11 40						
Voor	0.4	Nov	Dec	lan	Monthly in	rigation der	nand in 10 ⁴	6m^3 May	lun	Ind	Aug	Sen	Total
1925	0.204	1,173	1.392	0.928	0.205	0.580	0.700	0.768	0.681	0.396	0.728	0.761	9.110
1926	1.061	1.058	1.439	0.636	0.717	0.785	0.661	0.703	0.680	0.476	0.724	0.767	9.709
1927	0.437	0.869	1.184	0.731	0.984	0.838	0.542	0.764	0.681	0.635	0.632	0.744	9.041
1928	0.976	0.922	1.209	0.814	0.097	0.000	0.644	0.786	0.605	0.580	0.604	0.716	7.951
1929	0.727	0.598	0.890	0.850	0.381	0.467	0.185	0.747	0.656	0.593	0.723	0.690	7.507
1930	0.787	0.763	1 380	1.159	0.690	0.529	0.373	0.799	0.652	0.5648	0.719	0.758	8.986
1932	0.910	0.834	0.952	0.000	0.846	0.776	0.667	0.799	0.681	0.648	0.714	0.747	8.574
1933	0.994	0.000	1.060	0.604	0.387	0.427	0.559	0.743	0.593	0.648	0.615	0.653	7.283
1934	0.582	0.507	1.323	1.467	0.819	0.930	0.710	0,671	0.681	0.648	0.728	0.657	9.723
1935	0.903	1.268	1.204	0.164	0.000	0.002	0.665	0.653	0.681	0.555	0.728	0.450	7.273
1936	1.076	0.919	1.281	0.629	0.000	0.465	0.590	0.799	0.681	0.648	0.728	0.698	8 083
1938	0.941	1 196	0.580	0.325	0.000	0.741	0.659	0.643	0.631	0.481	0.700	0.659	7.675
1939	0.634	1.218	0.081	1.463	0.883	0.141	0.560	0.436	0.247	0.648	0.728	0,631	7.668
1940	0.796	0.568	0.771	1.059	1.115	0.453	0.210	0.723	0.607	0.574	0.653	0.692	8.221
1941	0.836	1.287	0.510	1.045	1.115	0.000	0.710	0.799	0.681	0.648	0.728	0.768	9.126
1942	1.076	1.082	1.125	1.510	0.579	0.077	0.022	0.578	0.681	0.209	0.728	0.768	8.435
1943	1.076	1.0/1	1.559	0.966	0.000	0.885	0.710	0.799	0.614	0.574	0.728	0.768	9.820
1945	0.741	0.951	1,475	0.000	0.283	0.329	0.611	0.792	0.670	0.614	0.728	0.768	7.942
1946	0.666	0.735	0.924	0.845	0.736	0.178	0.696	0.662	0.552	0.613	0.728	0.768	8.104
1947	0.881	1.152	0.906	0.885	0.831	0.000	0.658	0.799	0.681	0.621	0.728	0.716	8.859
1948	0.426	0.692	1.338	0.083	0.861	0.890	0.512	0.740	0.641	0.548	0.697	0.742	8.170
1949	1.023	0.761	0.521	1.207	0.611	0.607	0.342	0.646	0.661	0.648	0.724	0.768	8.519
1950	1.018	0.846	1 375	0.941	0.775	0.422	0.249	0.625	0.582	0.564	0.722	0.763	9.089
1952	0.755	1.025	0.576	0.675	0.312	0.544	0.276	0.797	0.681	0.624	0.728	0.753	7.745
1953	1.005	0.579	1.344	0.813	0.531	0.846	0.091	0.733	0.664	0.648	0.664	0.714	8.633
1954	0.750	0.160	0.698	0.888	0.298	0.402	0.554	0.651	0.665	0.646	0.728	0.768	7.208
1955	0.785	0.616	0.949	1.424	0.000	0.646	0.643	0.688	0.674	0.611	0.683	0.418	8.137
1956	1.027	1.155	0.885	0.720	0.000	0.590	0.599	0.725	0.652	0.557	0.690	0.581	8.162
1957	0.390	0.934	0.904	0.108	0.370	0.690	0.647	0.798	0.681	0.571	0.728	0.750	8.142
1959	1.036	0.980	0.912	1 293	0.000	0.757	0.175	0.405	0.635	0.625	0.722	0.766	8.308
1960	1.053	0.577	0.148	1.229	0.000	0.327	0.457	0.748	0.478	0.637	0.718	0.602	6.973
1961	0.896	1.075	1.034	0.918	0.813	0.372	0.253	0.799	0.667	0.648	0.685	0.719	8.879
1962	0.970	0.532	0.997	1.480	1.022	0.746	0.580	0.727	0.362	0.542	0.711	0.765	9.433
1963	0.610	0.877	0.676	0.953	0.696	0.902	0.608	0.798	0.681	0.648	0.724	0.620	8.712
1965	1.030	1.021	1.383	0.421	0.199	0.949	0.659	0.773	0.610	0.648	0.632	0.746	9.071
1966	0.729	1.042	0.966	0.165	0.000	0.618	0.364	0.794	0.679	0.532	0.728	0.767	7.385
1967	0.866	0.934	1.071	1.134	0.703	0.938	0.548	0.660	0.540	0.647	0.721	0.765	9.528
1968	0.905	0.714	0.542	0.767	0.762	0.000	0.546	0.799	0.681	0.615	0.728	0.683	7.742
1969	0.364	1.01/	1.057	1.489	0.871	0.896	0.646	0.786	0.662	0.581	0.728	0.766	9.863
1970	0.702	0.815	0.816	0.269	0.211	0.000	0.622	0.612	0.681	0.634	0.710	0.758	6.830
1972	0.684	0.951	1.305	1.136	0.868	0.354	0.403	0.734	0.681	0.618	0.728	0.000	8.462
1973	0.711	0.893	0.966	1.006	0.124	0.455	0.430	0.695	0.681	0.334	0.698	0.421	7.414
1974	1.023	0.801	1.074	0.408	0.382	0.920	0.368	0.683	0.641	0.648	0.728	0.767	8.442
1975	1.066	1.006	0.362	0.133	0.042	0.207	0.528	0.507	0.678	0.648	0.728	0.763	7.645
1970	1.024	0.981	0.634	0.403	0.535	0.000	0.219	0.793	0.677	0.643	0.727	0.767	7.477
1978	0.633	0.553	0.595	0.912	0,606	0.641	0.548	0.657	0.681	0.623	0.296	0.763	7.508
1979	0.589	0.977	0.775	0.756	0.000	0.450	0.510	0.786	0.681	0.648	0.709	0.342	7.223
1980	0.802	0.338	0.788	0.000	0.465	0.278	0.668	0.765	0.681	0.648	0.675	0.619	6.726
1981	0.704	0.786	1.219	1.304	1.006	0.849	0.526	0.676	0.652	0.638	0.728	0.765	9.874
1983	0.865	0.480	1.154	0.957	0.973	0.344	0.554	0.799	0.634	0.261	0.695	0.495	8.212
1984	0.260	0.737	1.178	0.000	0.318	0.380	0.669	0.557	0.585	0,558	0.728	0.708	6.678
1985	0.415	0.939	1.027	1.311	0.618	0.896	0.043	0.795	0.681	0.648	0.694	0.717	8.783
1986	0.909	0.802	0.925	1.209	0.739	0.189	0.701	0.685	0.666	0.648	0.492	0.357	8.323
1987	0.696	1.117	0.391	1.104	0.000	0.225	0.686	0.792	0.593	0.648	0.568	0.668	9 701
1988	0.508	0.175	0.786	1.021	0.949	0.255	0.513	0.799	0.681	0.622	0.724	0.768	7.801
1990	0.691	0.876	0.858	0.956	0.466	0.357	0.690	0.772	0.528	0.648	0.728	0.762	8.330
1991	1.057	0.854	1.342	1.100	1.034	0.501	0.639	0.799	0.607	0.648	0.713	0.768	10.061
1992	1.066	0.992	0.832	1.224	0.774	0.634	0.587	0.788	0.681	0.627	0.719	0.768	9.691
1993	0.859	0.686	0.648	0.894	1.091	0.710	0.551	0.787	0.681	0.648	0.728	0.720	9.001
1994	0.673	1.237	1.275	0.703	0.552	0.829	0.300	0.620	0.654	0.648	0.704	0.747	7 352
1995	0.763	0.775	1.437	0.435	0.174	0.472	0.491	0.688	0.681	0.648	0.715	0.546	7.825
1997	0.910	0.439	1.424	0.954	1.090	0.917	0.616	0.799	0.681	0.630	0.709	0.725	9.894
1998	0.733	0.781	0.562	0.827	0.623	0.348	0.462	0.718	0.680	0.606	0.718	0.768	7.826
1999	0.545	0.732	0.789	0.448	0.000	0.000	0.339	0.780	0.543	0.623	0.727	0.749	6.273
2000	0.841	0.767	1.228	1.370	0.000	0.604	0.590	0.757	0.648	0.642	0.726	0.768	8.940
2001	0.461	1.232	1.020	0.978	0.616	0.555	0.585	0.799	0.548	0.648	0.728	0.721	9.567
2002	0.859	1.046	1.121	1.197	0.000	0.129	0.460	0.797	0.618	0.639	0.708	0.760	8.336
2004	0.938	0.953	1.051	0.928	0.895	0.876	0.591	0.790	0.681	0.641	0.728	0.768	9.839
2005	1.057	0.685	1.346	0.893	0.497	0.337	0.635	0.722	0.606	0.573	0.652	0.691	8.695
Aug	0 904	0 963	0 975	0 922	0 542	0 515	0 516	0 777	0 639	0 500	0 700	0 681	8 402
Average	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average		122	1967	17470									
(m3/s)	0.300	0.333	0.364	0.311	0.222	0,192	0.199	0.271	0.246	0.224	0.261	0.263	0.266

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	В	81F10								
	-				Monthly in	rigation der	nand in 10 ⁴	^6m^3	(Taxia)	1.4		6.00	Total
1925	0.204	0.331	0.373	Jan 0.197	0.000	0 166	0.210	0.254	0.231	0.120	0.254	0.254	2.606
1926	0.323	0.284	0.393	0.085	0.181	0.248	0.194	0.227	0.231	0.153	0.253	0.256	2.827
1927	0.073	0.208	0.290	0.120	0.288	0.270	0.145	0.253	0.231	0.219	0.214	0.247	2.558
1928	0.288	0.229	0.299	0.152	0.000	0.000	0.187	0.262	0.200	0.196	0.203	0.235	2.251
1929	0.187	0.102	0.174	0.166	0.049	0.121	0.002	0.246	0.221	0.202	0.252	0.224	1.946
1930	0.326	0.284	0.000	0.288	0.172	0.145	0.078	0.267	0.215	0.107	0.254	0.248	2.385
1931	0.211	0.166	0.569	0.221	0.158	0.181	0.196	0.181	0.219	0.224	0.248	0.233	2.536
1933	0.295	0.000	0.241	0.072	0.051	0.105	0.152	0.244	0.195	0.224	0.207	0.209	1.996
1934	0.129	0.067	0.345	0.413	0.221	0.308	0.214	0.214	0.231	0.224	0.254	0.211	2.832
1935	0.258	0.370	0.298	0.000	0.000	0.000	0.195	0.207	0.231	0.186	0.254	0.126	2.125
1936	0.329	0.228	0.329	0.082	0.000	0.121	0.165	0.267	0.231	0.224	0.254	0.228	2.458
1937	0.273	0.315	0.059	0.000	0.316	0.230	0.000	0.249	0.221	0.221	0.248	0.104	2.235
1938	0.239	0.340	0.057	0.195	0.000	0.073	0.193	0.202	0.210	0.155	0.242	0.212	2.119
1939	0.215	0.090	0.129	0.248	0.342	0.115	0.012	0.236	0.200	0.194	0.223	0.225	2.229
1941	0.231	0.377	0.031	0.243	0.342	0.000	0.214	0.267	0.231	0.224	0.254	0.257	2.671
1942	0.329	0.294	0.266	0.431	0.126	0.000	0.000	0.176	0.231	0.045	0.254	0.257	2.408
1943	0.329	0.289	0.442	0.212	0.000	0.289	0.214	0.267	0.204	0.224	0.254	0.257	2.981
1944	0.158	0.377	0.407	0.202	0.078	0.318	0.149	0.236	0.200	0.194	0.223	0.225	2.767
1945	0.192	0.241	0.399	0.000	0.012	0.067	0.173	0.264	0.227	0.210	0.254	0.257	2.29/
1946	0.163	0.155	0.187	0.165	0.188	0.009	0.208	0.210	0.231	0.210	0.254	0.237	2.552
1948	0.069	0.138	0.351	0.000	0.238	0.291	0.133	0.243	0.215	0.183	0.241	0.246	2.348
1949	0.307	0.165	0.035	0.307	0.139	0.176	0.065	0.204	0.223	0.224	0.253	0.257	2.355
1950	0.305	0.199	0.162	0.374	0.342	0.103	0.028	0.195	0.231	0.223	0.203	0.207	2.573
1951	0.101	0.305	0.366	0.202	0.204	0.111	0.134	0.264	0.190	0.189	0.252	0.255	2.573
1952	0.198	0.271	0.055	0.099	0.023	0.151	0.038	0.266	0.231	0.214	0.254	0.251	2.052
1953	0.300	0.095	0.354	0.152	0.107	0.273	0.000	0.240	0.224	0.224	0.227	0.234	2.431
1954	0.196	0.000	0.100	0.181	0.018	0.095	0.150	0.206	0.225	0.224	0.234	0.113	2.297
1956	0.309	0.323	0.173	0.116	0.000	0.170	0.169	0.237	0.211	0.187	0.238	0.179	2.311
1957	0.133	0.288	0.241	0.000	0.192	0.310	0.109	0.267	0.219	0.217	0.254	0.215	Z.446
1958	0.282	0.234	0.180	0.000	0.045	0.210	0.188	0.267	0.231	0.192	0.254	0.249	2.332
1959	0.312	0.253	0.183	0.342	0.000	0.237	0.000	0.106	0.212	0.215	0.252	0.256	2.367
1960	0.319	0.094	0.000	0.316	0.000	0.066	0.111	0.246	0.147	0.220	0.250	0.188	1.957
1961	0.255	0.291	0.230	0.193	0.219	0.084	0.029	0.267	0.225	0.224	0.236	0.255	2.491
1963	0.285	0.275	0.217	0.418	0.320	0.296	0.172	0.241	0.231	0.224	0.252	0.242	2.987
1964	0.140	0.211	0.092	0.207	0.172	0.246	0.188	0.267	0.231	0.224	0.254	0.195	2.429
1965	0.310	0.269	0.370	0.005	0.000	0.315	0.193	0.256	0.202	0.224	0.214	0.248	2.606
1966	0.188	0.278	0.204	0.000	0.000	0.181	0.074	0.265	0.231	0.176	0.254	0.256	2.106
1967	0.243	0.234	0.245	0.278	0.175	0.311	0.148	0.209	0.173	0.224	0.251	0.256	2.747
1968	0.259	0.147	0.043	0.134	0.199	0.000	0.147	0.267	0.231	0.211	0.254	0.221	2.113
1970	0.045	0.208	0.117	0.037	0.3242	0.207	0.128	0.243	0.180	0.224	0.254	0.218	2.515
1971	0.177	0.187	0.146	0.000	0.000	0.000	0.178	0.190	0.231	0.218	0.247	0.253	1.826
1972	0.170	0.241	0,338	0.279	0.241	0.077	0.089	0.240	0.231	0.212	0.254	0.000	2.372
1973	0.180	0.218	0.204	0.228	0.000	0.116	0.100	0.224	0.231	0.095	0.241	0.115	1.952
1974	0.307	0.181	0.246	0.000	0.050	0.303	0.075	0.219	0.214	0.224	0.254	0.256	2.331
1975	0.324	0.263	0.000	0.000	0.000	0.020	0.140	0.147	0.230	0.224	0.254	0.255	2 115
1976	0.200	0.155	0.077	0.000	0.109	0.000	0.016	0.265	0.230	0.222	0.253	0.256	2.014
1978	0.150	0.085	0.062	0.190	0.137	0.190	0.148	0.209	0.231	0.214	0.077	0.255	1.947
1979	0.132	0.251	0.130	0.130	0.000	0.114	0.133	0.262	0.231	0.224	0.246	0.083	1.936
1980	0.217	0.003	0.135	0.000	0.082	0.047	0.197	0.253	0.231	0.224	0.232	0.195	1.816
1981	0.178	0.175	0.304	0.346	0.297	0.275	0.139	0.216	0.223	0.224	0.254	0.257	2.888
1982	0.270	0.254	0.323	0.308	0.341	0.016	0.209	0.250	0.212	0.220	0.228	0.230	2.000
1984	0.005	0.156	0.287	0.000	0.025	0.087	0.197	0.168	0,191	0.187	0.254	0.232	1.789
1985	0.064	0.236	0.228	0.349	0.141	0.293	0.000	0.265	0.231	0.224	0.240	0,236	2,508
1986	0.260	0.182	0.188	0.308	0.189	0.013	0.210	0.220	0.225	0.224	0.156	0.089	2.265
1987	0.175	0.308	0.000	0,266	0.000	0.027	0.204	0.264	0.195	0.224	0.229	0.215	2.106
1988	0.089	0.321	0.309	0.376	0.093	0.266	0.194	0.241	0.198	0.223	0.254	0.257	2.822
1989	0.100	0.000	0.134	0.233	0.274	0.038	0.133	0.267	0.231	0.214	0.253	0.257	2.135
1990	0.321	0.202	0.162	0.208	0.309	0.134	0.185	0.250	0.201	0.224	0.248	0.254	2.965
1992	0.325	0.257	0.152	0.314	0.203	0.187	0.164	0.262	0.231	0.216	0.250	0.257	2.818
1993	0.240	0.136	0.082	0.183	0.332	0.218	0.149	0.262	0.231	0.224	0.254	0.237	2.549
1994	0.166	0.357	0.326	0.110	0.115	0.180	0.048	0.193	0.231	0.224	0.244	0.248	2.442
1995	0.223	0.227	0.321	0.006	0.000	0.067	0.163	0.181	0.220	0.101	0.244	0.239	1.991
1996	0.201	0.171	0.392	0.010	0.000	0.123	0.125	0.221	0.231	0.224	0.249	0.165	2.112
1997	0.261	0.041	0.387	0.207	0.552	0.502	0.113	0.287	0.231	0.217	0.246	0.259	2.905
1999	0,115	0.154	0.135	0,015	0.000	0.000	0.064	0.259	0.174	0.214	0.253	0.249	1.632
2000	0.233	0.168	0.307	0.373	0.000	0.175	0 165	0.250	0.217	0.222	0.253	0.257	2.620
2001	0.082	0.000	0.042	0.074	0.335	0.309	0.081	0.261	0.213	0.224	0.254	0.154	2.028
2002	0.287	0.355	0.225	0.197	0.141	0.201	0.203	0.267	0.176	0.224	0.254	0.237	2.767
2003	0.240	0.279	0.265	0.303	0.000	0.000	0.112	0.266	0.205	0.221	0.246	0.254	2.392
2004	0.272	0.242	0.237	0.197	0.252	0.285	0.165	0.263	0.231	0.193	0.254	0.257	2.8//
2005	0.521	0.100	0.000	0.105	0,004	0.070	0.103	0.200	01200	0.200	UILLE	y.4.4.4	
Average	0.222	0.211	0.215	0.180	0.137	0.148	0.137	0.237	0.213	0.204	0.242	0.222	2.369
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average						860 J. 10 1994 - 10	again the second		120.020 minute	201220000			12 (000000000000000000000000000000000000
(m3/s)	0.083	0.082	0.080	0.067	0.056	0.055	0.053	0.089	0.082	0.076	0.091	0.086	0.075

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	E	881F20	2 12 Y							
Voar	Oct	Nov	Der	lan	Monthly in Feb	rigation der Mar	nand in 10 Apr	^6m^3 Mav	lun	Iul	Aug	Sep	Total
1925	0.204	0.633	0.720	0.412	0.021	0.321	0.404	0.463	0.415	0.224	0.451	0.470	4.962
1926	0.608	0.554	0.753	0.219	0.363	0.461	0.376	0.417	0.415	0.279	0.449	0.474	5.368
1927	0.183	0.426	0,578	0.281	0.545	0.498	0.294	0.460	0.415	0.390	0.384	0.458	4.912
1928	0.550	0.461	0.595	0.336	0.000	0.000	0.365	0.475	0.362	0.351	0.365	0.438	4.297
1929	0.379	0.244	0.380	0.360	0.137	0.245	0.050	0.448	0.397	0.301	0.448	0.420	4.535
1930	0.420	0.354	0.712	0.358	0.289	0.348	0.246	0.338	0.394	0.399	0.451	0.468	4.867
1932	0.504	0.402	0.421	0.000	0.450	0.455	0.380	0.484	0.415	0.399	0.442	0.460	4.813
1933	0.562	0.000	0.494	0.198	0.141	0.218	0.306	0.445	0.353	0.399	0.372	0.395	3.883
1934	0.281	0.184	0.673	0.780	0.432	0.561	0.411	0.395	0.415	0.399	0.451	0.397	5.377
1935	0.499	0.699	0.591	0.000	0.000	0.000	0.379	0.382	0.415	0.334	0.451	0.254	4.006
1935	0.519	0.460	0.544	0.214	0.000	0.244	0.328	0.453	0.415	0.393	0.431	0.216	4.279
1938	0.466	0.649	0.178	0.410	0.000	0.163	0.375	0.375	0.380	0.282	0.432	0.399	4.109
1939	0.316	0.664	0.000	0.777	0.476	0.028	0.306	0.232	0.115	0.399	0.451	0.379	4.143
1940	0.426	0.224	0.302	0.501	0.635	0.235	0.067	0.431	0.363	0.347	0.399	0.422	4.352
1941	0.453	0.712	0.131	0.491	0.635	0.000	0.411	0.484	0.415	0.399	0.451	0.475	5.057
1942	0.619	0.571	0.538	0.809	0.269	0.000	0.000	0.330	0.415	0.095	0.451	0.475	4.573
1943	0.619	0.564	0.836	0.438	0.000	0.530	0.411	0.484	0.368	0.399	0.451	0.475	5.268
1945	0.388	0.482	0.764	0.000	0.073	0.152	0.342	0.479	0.407	0.375	0.451	0.475	4.388
1946	0.338	0.335	0.403	0.357	0.376	0.052	0.401	0.388	0.325	0.375	0.451	0.475	4.275
1947	0.485	0.619	0.391	0.383	0.440	0.000	0.374	0.484	0.415	0.380	0.451	0.439	4.862
1948	0.176	0.306	0.683	0.000	0.461	0.534	0.273	0.443	0.387	0.329	0.430	0.456	4.479
1949	0.582	0.353	0.139	0.601	0.291	0.339	0.157	0.378	0.401	0.399	0.449	0.475	4.563
1950	0.578	0.410	0.360	0.714	0.635	0.215	0.094	0.363	0.415	0.397	0.366	0.391	4.937
1952	0.398	0.532	0.174	0.244	0.092	0.297	0.112	0.483	0.415	0.382	0.451	0.464	4.044
1953	0.570	0.231	0.687	0.335	0.237	0.503	0.000	0.438	0.403	0.399	0.407	0.437	4.648
1954	0.395	0.000	0.253	0.385	0.083	0.201	0.302	0.381	0.405	0.398	0.451	0.475	3.728
1955	0.419	0.256	0.420	0.750	0.000	0.366	0.364	0.406	0.410	0.373	0.420	0.232	4.415
1956	0.585	0.621	0.378	0.274	0.000	0.328	0.334	0.433	0.381	0.336	0.424	0.344	4.437
1957	0.285	0.561	0.495	0.000	0.382	0.306	0.255	0.484	0.395	0.367	0.451	0.462	4.448
1959	0.591	0,501	0.395	0.660	0.000	0.442	0.044	0.211	0.383	0.383	0.447	0.474	4.531
1960	0.603	0.230	0.000	0.616	0.000	0.151	0.236	0.448	0.274	0.391	0.444	0.359	3.751
1961	0.495	0.566	0,476	0.405	0.428	0.181	0.097	0.484	0.405	0.399	0.421	0.440	4.798
1962	0.546	0.200	0.451	0.789	0.571	0.435	0.320	0.434	0.193	0.325	0.439	0.473	5.176
1963	0.482	0.539	0,454	0.536	0.598	0.542	0.340	0.440	0.415	0.399	0.448	0.451	5.642
1964	0.500	0.431	0.239	0.429	0.548	0.456	0.375	0.464	0.366	0.399	0.384	0.459	4.950
1966	0.381	0.544	0.431	0.000	0.000	0.347	0.172	0.480	0.414	0.318	0.451	0.474	4.012
1967	0.474	0.470	0,502	0.551	0.353	0.567	0.298	0,387	0.317	0.398	0.446	0.473	5.237
1968	0.501	0.321	0.152	0.305	0.393	0.000	0.297	0.484	0.415	0.376	0.451	0.415	4.111
1969	0.135	0.527	0.492	0.795	0.467	0.538	0.366	0.475	0.402	0.352	0.451	0.473	5.473
1970	0.515	0.607	0.281	0.136	0.605	0.391	0.265	0.444	0.328	0.399	0.451	0.409	4.833
1971	0.350	0.482	0.660	0.552	0.465	0.169	0.199	0.439	0.415	0.378	0.451	0.000	4.560
1973	0.368	0.442	0.431	0.465	0.000	0.235	0.217	0.412	0.415	0.181	0.430	0.234	3.831
1974	0.582	0,380	0.504	0.071	0.138	0.554	0.175	0.403	0.387	0.399	0.451	0.474	4.518
1975	0.612	0.519	0.038	0.000	0.000	0.071	0.284	0.281	0.413	0.399	0.451	0.473	3.541
1976	0.503	0.410	0.713	0.068	0.000	0.163	0.395	0.462	0.415	0.399	0.438	0.129	4.095
1977	0.583	0.502	0.212	0.110	0.240	0.000	0.299	0.480	0.412	0.382	0.152	0.474	3.871
1979	0.285	0.499	0.304	0.298	0.000	0,233	0.272	0.475	0.415	0.399	0,438	0.180	3.798
1980	0.430	0.073	0.312	0.000	0.193	0.118	0.381	0.460	0.415	0.399	0.414	0.371	3.566
1981	0.363	0.369	0.602	0.667	0.560	0.506	0.283	0.398	0.402	0.398	0.451	0.475	5.474
1982	0.519	0.505	0.635	0.602	0.634	0.065	0.402	0.455	0.382	0.392	0.408	0.473	5.473
1983	0.4/3	0.166	0.558	0.432	0.538	0.162	0.302	0.484	0.382	0.131	0.428	0.284	3,525
1985	0.169	0.473	0.472	0.672	0.295	0.537	0.000	0.481	0.415	0.399	0.427	0.439	4.780
1986	0.503	0.380	0.404	0,602	0.377	0.059	0.404	0.405	0.404	0.399	0.287	0.190	4.416
1987	0.358	0.595	0.056	0.530	0.000	0.083	0.394	0.479	0.353	0.399	0.409	0.405	4.061
1988	0.211	0.618	0.611	0.716	0.213	0.492	0.378	0.441	0.358	0.397	0.451	0.475	5.361
1989	0.231	0.000	0.311	0.475	0.521	0.103	0.274	0.484	0.415	0.381	0.449	0.475	4.118
1990	0.355	0.430	0.359	0.431	0.194	0.170	0.397	0.465	0.308	0.399	0.451	0.470	5,605
1991	0.612	0.509	0.342	0.612	0.401	0.358	0.325	0.476	0.415	0.384	0.445	0.475	5.354
1993	0.469	0.303	0.220	0.389	0.619	0.410	0.300	0.476	0.415	0.399	0.451	0.441	4.892
1994	0.342	0.678	0.640	0.263	0.251	0.346	0.129	0.359	0.415	0.399	0.434	0.460	4.715
1995	0.440	0.457	0.631	0.081	0.000	0.152	0.324	0.339	0,396	0.190	0.435	0.445	3.890
1996	0.403	0.362	0.751	0.089	0.002	0.248	0.259	0.406	0.415	0.399	0.442	0.320	4.097
1997	0.504	0.139	0.742	0.429	0.518	0.552	0.345	0.484	0.415	0.387	0.438	0.445	4.097
1999	0.256	0.333	0,313	0.097	0.000	0.000	0.155	0.471	0.318	0.381	0.450	0.462	3,236
2000	0.457	0.357	0.608	0.712	0.000	0.337	0.327	0.455	0.392	0.395	0.450	0.475	4.964
2001	0,200	0.000	0.151	0.200	0.624	0.564	0.185	0.473	0.385	0.398	0.451	0.300	3.930
2002	0.549	0.675	0.467	0.412	0.294	0.381	0.392	0.484	0.323	0.399	0.451	0.442	5.268
2003	0.469	0.547	0.535	0.594	0.000	0.019	0.238	0.483	0.371	0.393	0.437	0.470	4.556
2004	0,523	0.483	0.488	0.412	0.484	0.524	0.328	0.478	0.415	0.394	0.451	0.475	5.454
2005	0.000	0.502	0.005	0.005	0.215	0.130	0.338	0.430	0.302	0.04/	0.050		
Average	0.435	0.427	0.445	0.372	0.272	0.286	0.278	0.434	0.385	0.365	0.432	0.415	4.548
1401	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average	0.100	0.105	0.100	0 1 2 0	0.112	0 107	0.107	0.163	0 149	0 126	0.161	0 160	0.144
(m3/s)	0.162	0.165	0.166	0.139	0.112	0.107	0.10/	0.102	0,148	0.130	0.101	0.100	0.144

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	ES B81F30									
-	-			1 and 1	Monthly in	rigation der	nand in 10^	6m^3				Ean	Total
Year 1025	0.204	2 100	2 307	1 350	FED 0 191	1 179	1 279	1 471	1 325	0 757	1 521	1 709	16,703
1925	2.074	1.854	2.408	0.748	1.253	1.615	1.194	1.329	1.324	0.931	1.514	1.723	17.968
1927	0.751	1.455	1.864	0.942	1.822	1.728	0.939	1.462	1.325	1.277	1.309	1.672	16.546
1928	1.892	1.565	1.916	1.113	0.000	0.000	1.158	1.509	1.159	1.156	1.249	1.610	14.327
1929	1,360	0.887	1.249	1.188	0.553	0.940	0.178	1.425	1.270	1.186	1.511	1.551	13.299
1930	2.092	1.856	0.000	1.836	1.208	1.070	0.581	1.538	1.237	0.689	1.521	1.679	15.307
1931	1.487	1.230	2.281	1.480	1.025	1.261	0.788	1.083	1.261	1.306	1.502	1.703	16.409
1932	1.749	1.381	1.377	0.000	1.527	1.595	1.207	1.538	1.325	1.306	1.492	1.678	12 211
1933	1.930	0.000	1.604	0.682	1.460	1.076	1 202	1.415	1.133	1.306	1.275	1.471	17 995
1934	1.055	2 305	1 906	2.494	0.000	0.000	1.203	1.235	1.325	1.300	1.521	1.475	13,346
1936	2.106	1.560	2.070	0.733	0.000	0.939	1.042	1.538	1.325	1.306	1.521	1.570	15.712
1937	1.816	2.018	0.627	0.125	1.964	1.520	0.101	1.441	1.272	1.288	1.488	0.906	14.566
1938	1.632	2.149	0.618	1.344	0.000	0.687	1.190	1.198	1.216	0.941	1.460	1.484	13.919
1939	1.163	2.197	0.000	2.484	1.605	0.265	0.976	0.752	0.389	1.306	1.521	1.423	14.081
1940	1.507	0.826	1.004	1.625	2.102	0.911	0.231	1.373	1.163	1.144	1.356	1.557	14.800
1941	1.591	2.345	0.474	1.596	2.102	0.000	1.302	1.538	1.325	1.306	1.521	1.725	16.825
1942	2.106	1.906	1.740	2.587	0.963	0.133	0.000	1.058	1.325	0.356	1.521	1.725	15.422
1943	2.106	1.883	2.666	1.430	0.000	1.829	1.302	1.538	1.179	1.306	1.521	1.725	18.48/
1944	1.206	2.345	2.485	1.378	0.705	1.979	0.960	1.3/3	1.163	1.144	1.356	1.55/	17.651
1945	1.389	1.627	1 320	1 178	1.204	0.052	1 271	1.525	1.502	1.232	1.521	1,725	14.651
1940	1.252	2 055	1.320	1.261	1.294	0.340	1 189	1.235	1.325	1.230	1.521	1.611	16.213
1948	0.729	1.082	2.191	0.000	1.558	1.840	0.873	1.410	1.238	1.088	1.453	1.667	15.131
1949	1.993	1.227	0.496	1,937	1.031	1.235	0.510	1.206	1.281	1,306	1.513	1.725	15.461
1950	1.981	1.404	1.185	2.288	2.102	0.847	0.314	1.161	1.325	1.300	1.253	1.460	16.620
1951	0.904	1.967	2.270	1.378	1.375	0.887	0.878	1.521	1.109	1.121	1.510	1.714	16.633
1952	1.419	1.785	0.606	0.827	0.410	1.103	0.370	1.534	1.325	1.253	1.521	1.692	13.846
1953	1,953	0.849	2.205	1.111	0.863	1.745	0.000	1.395	1.288	1.306	1.381	1.606	15.702
1954	1.409	0.000	0.853	1.266	0.382	0.804	0.963	1.216	1.293	1.302	1.521	1.725	12.735
1955	1.484	0.924	1.372	2.400	0.000	1.319	1.155	1.295	1.310	1.226	1.422	0.957	14.864
1956	2.001	2.061	1.241	0.919	0.000	1.200	1.062	1.378	1.218	1.107	1,437	1.512	14.937
1957	1.860	1.500	1.005	0.000	0.529	1.942	1 164	1.536	1 325	1 1 37	1 521	1.504	15 038
1959	2 021	1.689	1.295	2.120	0.000	1.555	0.159	0.686	1.225	1.256	1.510	1.721	15.237
1960	2.057	0.844	0.000	1.984	0.000	0.648	0.757	1.426	0.884	1.282	1.500	1.359	12.739
1961	1.720	1.891	1.548	1.329	1.457	0.741	0.323	1.538	1.295	1.306	1.427	1.616	16.191
1962	1.879	0.751	1.471	2.522	1.903	1.532	1.020	1.381	0.634	1.074	1.484	1.718	17.367
1963	1.680	1.805	1.478	1.734	1.987	1.865	1.081	1.401	1.324	1.306	1.512	1.648	18.820
1964	1.113	1.470	0.809	1.402	1.209	1.604	1,162	1.537	1.324	1.306	1.521	1.397	15.855
1965	2.006	1.776	2.288	0.315	0.179	1.968	1.191	1.481	1.171	1.306	1.310	1.676	16.666
1966	1.365	1.821	1.407	0.000	0.000	1.259	0.558	1.52/	1.322	1.052	1.521	1.722	13.554
1967	1.050	1.392	0.530	1.765	1.224	0.000	0.951	1.255	1 325	1 233	1.500	1.536	13 873
1969	0.601	1 768	1.596	2 541	1.579	1.854	1.162	1.509	1.284	1.160	1.521	1.720	18.296
1970	1.784	2.018	0.941	0.490	2.009	1.396	0.847	1.414	1.054	1.306	1.521	1.518	16.298
1971	1.306	1.341	1.096	0.016	0.203	0.000	1.110	1.133	1.325	1.275	1.483	1.702	11.990
1972	1.268	1.628	2.120	1.787	1.573	0.704	0.642	1.397	1.325	1.240	1.521	0.000	15.205
1973	1.325	1.504	1.407	1.514	0.028	0.914	0.698	1.312	1.325	0.625	1.455	0.964	13.072
1974	1.992	1.311	1.633	0.289	0.554	1.904	0.567	1.285	1.237	1.306	1.521	1.722	15.322
1975	2.084	1.744	0.182	0.000	0.000	0.399	0.907	0.906	1.319	1.306	1.521	1.719	12.088
1976	1.747	1.405	2.283	0.280	0.000	0.685	1.253	1.470	1.325	1.306	1.480	0.633	13.868
1977	1.995	0.794	0.725	1 316	1.020	1 308	0.231	1.323	1 324	1.250	0.581	1 713	13 298
1979	1 068	1.683	1.012	0.994	0.000	0.905	0.871	1.509	1.325	1.306	1.480	0.794	12.945
1980	1,518	0.355	1.037	0.000	0.726	0,546	1.210	1.463	1.325	1.306	1.406	1.397	12.289
1981	1.312	1.279	1.939	2.144	1.869	1.753	0.903	1.270	1.283	1.303	1.521	1.725	18.300
1982	1.797	1.699	2.041	1.942	2.098	0.380	1.276	1.449	1.222	1.285	1.386	1.718	18.294
1983	1.653	0.645	1.801	1.411	1.799	0.684	0.964	1.538	1.223	0.467	1,450	1.123	14.759
1984	0.387	1.176	1.852	0.000	0.422	0.759	1.212	1.014	1.116	1.109	1.521	1.592	12.159
1985	0.705	1.601	1.535	2.158	1.044	1.852	0.000	1.530	1.325	1.306	1.446	1.613	16.115
1986	1.747	1.313	1.322	1.942	1.299	0.302	1.282	1.291	1.292	1 306	1 390	1 503	13 771
1088	0.836	2,051	1.967	2,297	0.788	1.710	1,199	1.403	1.148	1.301	1,521	1,725	17.946
1988	0.900	0.029	1.033	1.545	1.747	0.499	0.875	1.538	1.325	1.249	1.513	1.725	13.978
1990	1.285	1.468	1.182	1.408	0.728	0.710	1.258	1.479	0.991	1.306	1.521	1.711	15.047
1991	2.064	1.423	2.201	1.710	1.929	1.011	1.146	1.538	1.164	1.306	1.489	1.725	18.707
1992	2.085	1.714	1.128	1.973	1.374	1.293	1.036	1.513	1.325	1.260	1.502	1.725	17.927
1993	1.640	1.071	0.751	1.278	2.052	1.454	0.958	1.512	1.325	1.306	1.521	1.618	16.486
1994	1.246	2.238	2.056	0.884	0.906	1 255	0.422	1.148	1.325	1.306	1.468	1.678	15.933
1995	1.548	1.551	2.028	0.321	0.000	0.651	1.031	1.085	1.265	0.653	1.471	1.632	13.237
1996	1.435	1.255	2,403	0.343	0.129	0.952	0.830	1.296	1.325	1.305	1.493	1.236	14.003
1997	1.749	1 260	2.3/6	1 1 2 0	1.049	1.691	0.767	1.358	1.323	1 214	1.480	1 725	13 997
1000	1.3/3	1,166	1.039	0.369	0.000	0.000	0.505	1.496	1.024	1.214	1.519	1.683	11.028
2000	1,603	1,239	1,958	2.284	0.000	1,229	1.042	1,446	1.252	1.293	1.517	1.725	16.587
2001	0.801	0.000	0.534	0.688	2.066	1.933	0.598	1.505	1.231	1.304	1.521	1.174	13.357
2002	1.888	2.228	1.518	1.351	1.040	1.366	1.243	1.538	1.036	1,306	1.521	1.620	17.658
2003	1.641	1,830	1.732	1.916	0.000	0.239	0.763	1.535	1.188	1.287	1.478	1.709	15.317
2004	1.809	1.632	1.584	1.351	1.631	1.810	1.043	1.518	1.325	1.290	1.521	1.725	18.238
2005	2.065	1.068	2.209	1.277	0.792	0.670	1.138	1.371	1.161	1.142	1.354	1.555	15.804
		4.455		1.345	0.044	1.000	0.000	1 304	1 330	1 100	1 450	1 534	15 244
Average	1.526	1.453	1.448	1.215	0.944	1.051	388.0	1.581	1.230	21	1.460	1.534	365 25
Average	31	50	51	21	20.20	21	50	21	50	51	21	50	303.25
(m3/s)	0.570	0.560	0.540	0.454	0.387	0.392	0.343	0.516	0.475	0.447	0.545	0.592	0.486

2000

2001

2002

2003

2004

2005

Average

Average

(m3/s)

0.001

0.010

0.008

0.009

0.011

0.009

0.003

31

0.000

0.015

0.012

0.010

0.006

0.009

0.003

30

0.005

0.013

0.015

0.014

0.019

0.012

0.005

31

FIXED AREA IRRIGATION DEMAND TIME SERIES			B	1101									
	.		.		Monthly in	rigation den	nand in 10 ⁴	6m^3	lun	164	A.u.a.	Eon	Total
1925	0.204	0.014	0.020	0.011	0.000	0.005	0.011	0.014	0.012	0.006	0.011	0.005	0.115
1926	0.011	0.012	0.020	0.006	0.007	0.008	0.010	0.013	0.012	0.008	0.011	0.005	0.124
1927	0.000	0.009	0.016	0.008	0.012	0.009	0.008	0.014	0.012	0.011	0.009	0.005	0.113
1928	0.010	0.010	0.016	0.009	0.000	0.000	0.010	0.014	0.011	0.010	0.009	0.004	0.102
1929	0.005	0.004	0.011	0.010	0.001	0.003	0.002	0.013	0.012	0.010	0.011	0.004	0.086
1930	0.011	0.012	0.000	0.015	0.007	0.004	0.005	0.014	0.012	0.006	0.011	0.005	0.102
1931	0.006	0.007	0.019	0.012	0.005	0.006	0.007	0.011	0.012	0.011	0.010	0.005	0.112
1932	0.008	800.0	0.012	0.000	0.009	0.008	0.010	0.014	0.012	0.011	0.010	0.005	0.109
1933	0.010	0.000	0.014	0.006	0.002	0.002	0.008	0.013	0.011	0.011	0.009	0.003	0.089
1934	0.003	0.002	0.016	0.021	0.000	0.000	0.010	0.012	0.012	0.009	0.011	0.000	0.095
1936	0.011	0.010	0.018	0.006	0.000	0.003	0.009	0.014	0.012	0.011	0.011	0.004	0.109
1937	0.009	0.013	0.005	0.001	0.013	0.008	0.001	0.013	0.012	0.011	0.010	0.000	0.097
1938	0.008	0.014	0.005	0.011	0.000	0.001	0.010	0.011	0.012	0.008	0.010	0.003	0.094
1939	0.004	0.015	0.000	0.021	0.010	0.000	0.008	0.008	0.005	0.011	0.011	0.003	0.095
1940	0.007	0.004	0.009	0.014	0.014	0.003	0.002	0.013	0.011	0.010	0.009	0.004	0.098
1941	0.007	0.016	0.004	0.013	0.014	0.000	0.011	0.014	0.012	0.011	0.011	0.005	0.119
1942	0.011	0.012	0.015	0.022	0.005	0.000	0.000	0.010	0.012	0.003	0.011	0.005	0.107
1943	0.001	0.012	0.022	0.012	0.000	0.010	0.001	0.014	0.011	0.010	0.009	0.003	0.122
1945	0.006	0.010	0.021	0.000	0.000	0.001	0.009	0.014	0.012	0.010	0.011	0.005	0.099
1946	0.004	0.006	0.011	0.010	0.008	0.000	0.011	0.012	0.010	0.010	0.011	0.005	0.098
1947	0.008	0.014	0.011	0.011	0.009	0.000	0.010	0.014	0.012	0.010	0.011	0.004	0.114
1948	0.000	0.005	0.019	0.000	0.010	0.010	0.008	0.013	0.012	0.009	0.010	0.005	0.101
1949	0.010	0.007	0.004	0.016	0.005	0.006	0.005	0.012	0.012	0.011	0.011	0.005	0.103
1950	0.010	0.008	0.010	0.019	0.014	0.002	0.003	0.011	0.012	0.011	0.009	0.003	0.113
1951	0.002	0.013	0.019	0.012	0.008	0.003	0.008	0.014	0.011	0.009	0.011	0.005	0.114
1952	0.006	0.011	0.005	0.007	0.000	0.004	0.003	0.013	0.012	0.011	0.010	0.005	0.105
1954	0.006	0.000	0.007	0.011	0.000	0.002	0.008	0.012	0.012	0.011	0.011	0.005	0.084
1955	0.006	0.004	0.012	0.020	0.000	0.006	0.010	0.012	0.012	0.010	0.010	0.000	0.103
1956	0.010	0.014	0.011	0.008	0.000	0.005	0.009	0.013	0.012	0.009	0.010	0.002	0.103
1957	0.003	0.012	0.014	0.000	0.008	0.011	0.007	0.014	0.012	0.011	0.011	0.003	0.105
1958	0.009	0.010	0.011	0.000	0.001	0.007	0.010	0.014	0.012	0.010	0.011	0.005	0.100
1959	0.011	0.011	0.011	0.018	0.000	0.008	0.002	0.007	0.012	0.010	0.011	0.005	0.105
1960	0.011	0.004	0.000	0.017	0.000	0.001	0.007	0.015	0.009	0.011	0.010	0.002	0.110
1962	0.009	0.003	0.013	0.021	0.013	0.008	0.009	0.013	0.007	0.009	0.010	0.005	0.119
1963	0.008	0.012	0.013	0.015	0.013	0.010	0.009	0.013	0.012	0.011	0.011	0.004	0.131
1964	0.003	0.009	0.007	0.012	0.007	0.008	0.010	0.014	0.012	0.011	0.011	0.003	0.107
1965	0.010	0.011	0.019	0.002	0.000	0.011	0.010	0.014	0.011	0.011	0.009	0.005	0.114
1966	0.005	0.012	0.012	0.000	0.000	0.006	0.005	0.014	0.012	0.009	0.011	0.005	0.091
1967	0.008	0.010	0.014	0.015	0.007	0.011	0.008	0.012	0.010	0.011	0.011	0.005	0.121
1968	0.008	0.006	0.005	0.009	0.008	0.000	0.008	0.014	0.012	0.010	0.011	0.004	0.095
1909	0.000	0.013	0.008	0.004	0.013	0.007	0.007	0.013	0.010	0.011	0.011	0.003	0.110
1971	0.005	0.008	0.009	0.000	0.000	0.000	0.009	0.011	0.012	0.011	0.010	0.005	0.081
1972	0.005	0.010	0.018	0.015	0.010	0.001	0.006	0.013	0.012	0.010	0.011	0.000	0.111
1973	0.005	0.009	0.012	0.013	0.000	0.003	0.006	0.012	0.012	0.005	0.010	0.000	0.089
1974	0.010	0.008	0.014	0.002	0.001	0.011	0.005	0.012	0.012	0.011	0.011	0.005	0.102
1975	0.011	0.011	0.002	0.000	0.000	0.000	0.008	0.009	0.012	0.011	0.011	0.005	0.079
1976	0.008	0.008	0.019	0.002	0.000	0.001	0.001	0.014	0.012	0.011	0.011	0.005	0.090
1978	0.004	0.003	0.006	0.011	0.005	0.006	0,008	0.012	0.012	0.010	0.003	0.005	0.086
1979	0.003	0.011	0.009	0.008	0.000	0.003	0.008	0.014	0.012	0.011	0.010	0.000	0.089
1980	0.007	0.000	0.009	0.000	0.003	0.000	0.010	0.014	0.012	0.011	0.010	0.003	0.078
1981	0.005	0.007	0.017	0.018	0.012	0.010	0.008	0.012	0.012	0.011	0.011	0.005	0.127
1982	0.009	0.011	0.017	0.016	0.014	0.000	0.011	0.014	0.012	0.011	0.010	0.005	0.128
1983	0.008	0.002	0.015	0.012	0.012	0.001	0.008	0.014	0.012	0.004	0.010	0.000	0.098
1984	0.000	0.006	0.018	0.000	0.000	0.002	0.010	0.010	0.012	0.003	0.010	0.004	0.109
1985	0.008	0.008	0.011	0.016	0.008	0.000	0.011	0.012	0.012	0.011	0.007	0.000	0.104
1987	0.005	0.013	0.002	0.014	0.000	0.000	0.011	0.014	0.011	0.011	0.010	0.003	0.094
1988	0.001	0.014	0.017	0.019	0.003	0.009	0.010	0.013	0.011	0.011	0.011	0.005	0.124
1989	0.002	0.000	0.009	0.013	0.011	0.000	0.008	0.014	0.012	0.010	0.011	0,005	0.095
1990	0.005	0.009	0.010	0.012	0.003	0.001	0.011	0.014	0.010	0.011	0.011	0.005	0.100
1991	0.011	0.009	0.019	0.014	0.013	0.004	0.010	0.014	0.011	0.011	0.010	0.005	0.130
1992	0.011	0.011	0.010	0.017	0.008	0.006	0.009	0.014	0.012	0.010	0.010	0.005	0.117
1004	0.008	0.006	0.007	0.011	0.004	0.007	0.008	0.014	0.012	0.011	0.010	0.005	0.108
1995	0.007	0.010	0.017	0.003	0.000	0.001	0.009	0.011	0.012	0.006	0.010	0.004	0.089
1996	0.006	0.007	0.020	0.003	0.000	0.003	0.007	0.012	0.012	0.011	0.010	0.001	0.094
1997	0.008	0.001	0.020	0.012	0.014	0.011	0.009	0.014	0.012	0.011	0.010	0.004	0.127
1998	0.006	0.007	0.005	0.010	0.006	0.001	0.007	0.013	0.012	0.010	0.010	0.005	0.092
1999	0.002	0.006	0.009	0.003	0.000	0.000	0.005	0.014	0.010	0.010	0.011	0.005	0.075
2000	0.007	0.007	0.017	0.019	0.000	0.005	0.009	0.013	0.012	0.011	0.011	0.005	0.110

Technical Study Module : Review of Water Requirements : Volume 2

0.014

0.006

0.000

0.010

0.003

0.005

28.25

0.002

0.006

0.011

0.016

0.011

0.011

0.010

0.004

31

0.011

0.007

0.000

0.010

0.001

0.005

0.002

31

0.005

0.011

0.007

0.009

0.010

0.008

0.003

30

0.014

0.014

0.014

0.014

0.013

0.013

0.005

31

0.012

0.010

0.011

0.012

0.011

0.012

0.004

30

0.011

0.011

0.011

0.011

0.010

0.010

0.004

31

0.011

0.011

0.010

0.011

0.009

0.010

0.004

31

0.001

0.004

0.005

0.005

0.004

0.004

0.001

30

0.089

0.122

0.108

0.126

0.107

0.105

365.25

0.003

FIXED AREA IF	RIGATION	DEMAND TI	ME SERIES	В	81J10								
¥	0.1	National	Dee	lan.	Monthly i	rrigation der	nand in 10	^6m^3	lun	Int	Aug	Sen	Total
1925	0.204	0 385	0.553	0 317	0.000	0.110	0.314	0.380	0.341	0.167	0.273	0.094	3.098
1926	0.286	0.329	0.577	0.173	0.185	0.206	0.295	0.347	0.341	0.206	0.272	0.097	3.314
1927	0.000	0.236	0.451	0.220	0.314	0.231	0.237	0.378	0.341	0.284	0.227	0.087	3.005
1928	0.247	0.262	0.463	0.261	0.000	0.000	0.287	0.388	0.303	0.257	0.214	0.074	2.755
1929	0.129	0.103	0.306	0.279	0.022	0.056	0.061	0.369	0.329	0.263	0.271	0.062	2.250
1930	0.290	0.329	0.000	0.432	0.175	0.085	0.155	0.395	0.321	0.151	0.273	0.088	2.694
1931	0.158	0.184	0.348	0.348	0.133	0.128	0.202	0.291	0.327	0.290	0.267	0.093	2.898
1932	0.255	0.000	0.390	0.157	0.025	0.037	0.245	0.367	0.297	0.290	0.219	0.046	2.328
1934	0.060	0.058	0.519	0.584	0.234	0.274	0.319	0.331	0.341	0.290	0.273	0.047	3.332
1935	0.212	0.432	0.460	0.000	0.000	0.000	0.297	0.323	0.341	0.245	0.273	0.000	2.583
1936	0.293	0.261	0.499	0.169	0.000	0.056	0.260	0.395	0.341	0.290	0.273	0.066	2.903
1937	0.230	0.366	0.155	0.019	0.346	0.185	0.043	0.373	0.329	0.286	0.266	0.000	2.599
1938	0.190	0.397	0.153	0.316	0.000	0.000	0.294	0.317	0.316	0.208	0.260	0.048	2,499
1939	0.085	0.407	0.000	0.582	0.265	0.000	0.245	0.215	0.126	0.290	0.275	0.055	2.525
1940	0.162	0.088	0.247	0.382	0.376	0.049	0.074	0.395	0.304	0.2.34	0.238	0.097	3.207
1942	0.293	0.341	0.422	0.605	0.118	0.000	0.000	0.286	0.341	0.075	0.273	0.097	2.851
1943	0.293	0.335	0.636	0.336	0.000	0.253	0.319	0.395	0.308	0.290	0.273	0.097	3.537
1944	0.095	0.441	0.595	0.324	0.058	0 285	0.242	0.357	0.304	0.254	0.238	0.064	3.256
1945	0.136	0.276	0.585	0.000	0.000	0.000	0.270	0.391	0.336	0.274	0.273	0.097	2.639
1946	0.101	0.170	0.322	0.277	0.194	0.000	0.312	0.327	0.277	0.273	0.273	0.097	2.624
1947	0.202	0.375	0.313	0.296	0.240	0.000	0.293	0.395	0.341	0.277	0.273	0.075	3.081
1948	0.000	0.149	0.527	0.000	0.255	0.255	0.222	0.366	0.321	0.241	0.259	0.086	2.680
1949	0.268	0.183	0.123	0.455	0.134	0.122	0.138	0.319	0.331	0.290	0.272	0.097	2.734
1950	0.266	0.225	0.290	0.337	0.376	0.034	0.095	0.309	0.341	0.285	0.271	0.095	3.027
1952	0.020	0.333	0.150	0.192	0.000	0.093	0.106	0.394	0.341	0,278	0.273	0.091	2.374
1953	0.260	0.093	0.530	0.261	0.095	0.234	0.015	0.362	0.333	0.290	0.243	0.074	2.790
1954	0.140	0.000	0.210	0.297	0.000	0.025	0.242	0.322	0.334	0.289	0.273	0.097	2.231
1955	0.157	0.111	0.335	0.562	0.000	0.141	0.286	0.340	0.338	0.272	0.252	0.000	2.794
1956	0.270	0.376	0.303	0.214	0.000	0.114	0.265	0.358	0.317	0.246	0.255	0.011	2.731
1957	0.064	0.333	0.390	0.000	0.199	0.277	0.193	0.395	0.327	0.282	0.273	0.052	2.785
1958	0.240	0.268	0.312	0.000	0.017	0.161	0.288	0.394	0.341	0.252	0.273	0.090	2.637
1959	0.275	0.291	0.316	0.498	0.000	0.193	0.057	0.200	0.318	0.279	0.271	0.097	2.794
1960	0.202	0.032	0.000	0.312	0.232	0.010	0.095	0.395	0.334	0.290	0.253	0.076	2.920
1962	0.244	0.070	0.358	0.590	0.332	0.188	0.255	0.359	0.183	0.238	0.265	0.096	3.179
1963	0.200	0.318	0.360	0,408	0.351	0.260	0.269	0.364	0.341	0.290	0.271	0.082	3.514
1964	0.074	0.240	0.199	0.330	0.175	0.204	0.287	0.394	0.341	0.290	0.273	0.030	2.838
1965	0.271	0.311	0.549	0.067	0.000	0.283	0.294	0.382	0.306	0.290	0.227	0.088	3.068
1966	0.131	0.321	0.343	0.000	0.000	0.128	0.150	0.392	0.340	0.233	0.273	0.097	2.408
1967	0.195	0.268	0.395	0.419	0.178	0.277	0.240	0.326	0.271	0.289	0.270	0.096	3.226
1968	0.213	0.160	0.134	0.238	0.207	0.000	0.239	0.395	0.341	0.274	0.273	0.059	2.532
1969	0.000	0.309	0.388	0.595	0.259	0.256	0.267	0.367	0.332	0.238	0.273	0.055	2.926
1970	0.225	0.307	0.251	0.000	0.000	0.000	0.276	0.302	0.341	0.283	0.265	0.093	2.156
1972	0.109	0.276	0.510	0.420	0.258	0.002	0.169	0.363	0.341	0.275	0.273	0.000	2.997
1973	0.122	0.248	0.343	0.356	0.000	0.050	0.182	0.343	0.341	0.136	0.259	0.000	2.380
1974	0.268	0.203	0.396	0.060	0.023	0.269	0.151	0.337	0.321	0.290	0.273	0.097	2.690
1975	0.288	0.304	0.044	0.000	0.000	0.000	0.230	0.250	0.340	0.290	0.273	0.096	2.116
1976	0.215	0.225	0.548	0.058	0.000	0.000	0.308	0.379	0.341	0.290	0.265	0.000	2.628
1977	0.269	0.291	0.179	0.094	0.097	0.000	0.078	0.392	0.339	0.266	0.275	0.097	2.357
1978	0.085	0.080	0.139	0.303	0.131	0.048	0.221	0.388	0.341	0.290	0.264	0.000	2.386
1980	0.165	0.000	0.255	0.000	0.063	0.000	0.298	0.378	0.341	0.290	0.248	0.030	2.068
1981	0.119	0.195	0.468	0.503	0.324	0.236	0.229	0.334	0.332	0.289	0.273	0.097	3.400
1982	0.226	0.293	0.492	0.456	0.376	0.000	0.313	0.374	0.318	0.286	0.244	0.096	3.474
1983	0.194	0.045	0.436	0.332	0.309	0.000	0.242	0.395	0.318	0.100	0,258	0.000	2.629
1984	0.000	0.171	0.448	0.000	0.000	0.014	0.299	0.275	0.294	0,246	0.273	0.071	2.091
1985	0.000	0.270	0.373	0.507	0.13/	0.258	0.000	0.393	0,341	0.290	0.257	0.075	2.901
1985	0.215	0.205	0.525	0.456	0.190	0.000	0.313	0.335	0.297	0.290	0.245	0.052	2.518
1987	0.010	0.374	0.475	0.539	0.078	0.227	0.296	0.364	0.301	0.289	0.273	0.097	3.323
1989	0,025	0.000	0.254	0.363	0.297	0.000	0.222	0.395	0.341	0.278	0.272	0.097	2.544
1990	0.113	0.239	0.289	0.331	0.064	0.003	0.309	0.381	0.265	0.290	0.273	0.095	2.653
1991	0.284	0.229	0.529	0.402	0.338	0.072	0.284	0.395	0.304	0.290	0.266	0.097	3.491
1992	0.288	0.296	0.277	0.464	0.213	0.135	0.259	0,389	0.341	0.280	0.269	0.097	3.308
1993	0.191	0.146	0.185	0.300	0.365	0.171	0.241	0.389	0.341	0.290	0.273	0.076	2.970
1994	0.104	0.417	0.495	0.206	0.105	0.127	0.118	0.306	0.341	0.290	0.262	0.088	2.859
1995	0.171	0.259	0.489	0.068	0.000	0.000	0.258	0.291	0.328	0.143	0.263	0.079	2.348
1996	0.146	0.190	0.576	0.074	0.000	0.058	0.212	0.340	0.341	0.281	0.265	0.079	3,404
1002	0.132	0.193	0.143	0.267	0.140	0.000	0.198	0.354	0.341	0.270	0.269	0.097	2.404
1999	0.043	0.169	0.255	0.080	0.000	0.000	0.137	0.385	0.273	0.278	0.273	0.089	1.981
2000	0.183	0.186	0.472	0.536	0.000	0.121	0.260	0.374	0.325	0.287	0.273	0.097	3.114
2001	0.002	0.000	0.132	0.158	0,368	0.275	0.159	0.387	0.320	0.290	0.273	0.000	2.366
2002	0.246	0.415	0.369	0.318	0.136	0.151	0.306	0.395	0.275	0.290	0.273	0.076	3.251
2003	0.192	0.323	0,420	0.450	0.000	0.000	0.197	0.394	0.310	0.286	0.264	0.094	2.930
2004	0.229	0.278	0.385	0.318	0.271	0.249	0.260	0.390	0.341	0.287	0,273	0.097	3.377
2005	0.284	0.145	0.531	0.300	0.079	0.000	0.282	0.357	0.304	0.254	0.237	0.065	2.836
Average	0.172	0.240	0.351	0.284	0.141	0.105	0.224	0.359	0,320	0.266	0.260	0.069	2.790
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average												S 2525	100000000
(m3/s)	0.064	0.093	0.131	0.106	0.058	0.039	0.087	0.134	0.123	0.099	0.097	0.027	0.088

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	E	881G01								
Marrie	0.4		Dee	law	Monthly in	rigation der	nand in 10 ⁴	6m^3	lum	L.I	Aug	Son	Total
1925	0.204	0 329	0.456	0 358	0 151	0.000	0.065	0.075	0.072	0.000	0.054	0.005	1.728
1926	0.248	0.292	0.472	0.266	0.312	0.027	0.053	0.055	0.072	0.007	0.053	0.007	1.865
1927	0.047	0.231	0,389	0.296	0.399	0.043	0.016	0.074	0.072	0.057	0.025	0.000	1.649
1928	0.220	0.248	0.397	0.322	0.117	0.000	0.048	0.080	0.049	0.040	0.016	0.000	1.538
1929	0.139	0.145	0.295	0.333	0.206	0.000	0.000	0.069	0.064	0.044	0.053	0.000	1.348
1930	0.251	0.292	0.044	0.432	0.305	0.000	0.000	0.084	0.060	0.000	0.054	0.001	1.523
1931	0.159	0.197	0.453	0.378	0.278	0.000	0.000	0.020	0.063	0.061	0.052	0.004	1.663
1932	0.199	0.220	0.315	0.004	0.354	0.024	0.055	0.084	0.072	0.061	0.050	0.001	1.439
1933	0.226	0.000	0.349	0.256	0.207	0.000	0.022	0.067	0.045	0.061	0.020	0.000	1.254
1934	0.093	0.116	0.434	0.532	0.345	0.070	0.068	0.045	0.072	0.061	0.054	0.000	1.891
1935	0.196	0.360	0.395	0.124	0.022	0.000	0.054	0.040	0.072	0.032	0.054	0.000	1.351
1936	0.253	0.247	0.420	0.264	0.000	0.000	0.031	0.084	0.072	0.061	0.054	0.000	1.487
1937	0.209	0.317	0.201	0.172	0.421	0.014	0.000	0.071	0.065	0.058	0.050	0.000	1.575
1938	0.181	0.337	0.199	0.357	0.015	0.000	0.052	0.037	0.057	0.009	0.046	0.000	1.290
1939	0.109	0.344	0.051	0.531	0.365	0.000	0.022	0.000	0.000	0.051	0.054	0.000	1.538
1940	0.162	0.135	0.258	0.400	0.442	0.000	0.000	0.061	0.049	0.038	0.032	0.000	1.5//
1941	0.175	0.367	0.177	0.596	0.442	0.000	0.000	0.004	0.072	0.001	0.054	0.007	1 997
1942	0.255	0.300	0.570	0.340	0.200	0.000	0.000	0.017	0.072	0.000	0.054	0.007	1 912
1945	0.255	0.290	0.311	0.370	0.000	0.037	0.008	0.061	0.032	0.001	0.032	0.007	1.835
1944	0.115	0.367	0.484	0.000	0.175	0.075	0.015	0.082	0.049	0.051	0.054	0.007	1.353
1946	0.120	0.188	0.306	0.000	0.319	0.000	0.064	0.043	0.032	0.050	0.054	0.007	1.514
1947	0.189	0.322	0.300	0.344	0.349	0.000	0.052	0.084	0.072	0.053	0.054	0.000	1.821
1948	0.043	0.174	0.439	0.101	0,359	0.059	0.007	0.067	0.060	0.030	0.045	0.000	1.383
1949	0.236	0.196	0.181	0.448	0.279	0.000	0.000	0.038	0.066	0.061	0.053	0.007	1.563
1950	0.234	0.223	0.286	0.501	0.442	0.000	0.000	0.031	0.072	0.060	0.017	0.000	1.866
1951	0.070	0.309	0.451	0.362	0.331	0.000	0.007	0.082	0.041	0.035	0.053	0.005	1.747
1952	0.148	0.281	0,197	0.278	0.184	0.000	0.000	0.084	0.072	0.053	0.054	0.002	1.355
1953	0.230	0.139	0.441	0.322	0.253	0.046	0.000	0.064	0.067	0.061	0.035	0.000	1.657
1954	0.147	0.009	0.235	0.345	0.180	0.000	0.020	0.039	0.067	0.060	0.054	0.007	1.164
1955	0.158	0.150	0.314	0.518	0.000	0.000	0.048	0.050	0.070	0.050	0.041	0.000	1.399
1956	0.237	0.323	0.294	0.293	0.082	0.000	0.034	0.062	0.057	0.033	0.043	0.000	1.458
1957	0.095	0.295	0.350	0.000	0.321	0.073	0.000	0.084	0.063	0.056	0.054	0.000	1.391
1958	0.216	0.252	0.300	0.108	0.202	0.000	0.049	0.084	0.072	0.037	0.054	0.002	1.374
1959	0.240	0.267	0.302	0.475	0.000	0.019	0.000	0.000	0.058	0.054	0.053	0.006	1.474
1960	0.246	0.138	0.070	0.455	0.072	0.000	0.000	0.084	0.009	0.057	0.031	0.000	1 785
1961	0.194	0.297	0.341	0.555	0.345	0.000	0.000	0.062	0.000	0.001	0.041	0.000	1.808
1963	0.188	0.124	0.329	0.417	0.424	0.062	0.020	0.065	0.072	0.061	0.053	0.000	1.993
1964	0.102	0.233	0.228	0 366	0.306	0.026	0.049	0.084	0.072	0.061	0.054	0.000	1.580
1965	0.238	0.280	0.454	0.201	0.149	0.076	0.053	0.076	0.050	0.061	0.025	0.000	1.662
1966	0.140	0.287	0.319	0.125	0.006	0.000	0.000	0.083	0.071	0.025	0.054	0.006	1.116
1967	0.184	0.252	0.353	0.424	0.308	0.073	0.018	0.042	0.028	0.060	0.052	0.006	1.801
1968	0.197	0.181	0.187	0.307	0.327	0.000	0.018	0.084	0.072	0.051	0.054	0.000	1.478
1969	0.024	0.279	0.348	0.540	0.362	0.061	0.049	0.080	0.066	0.040	0.054	0.005	1.908
1970	0.204	0.317	0.248	0.227	0.427	0.000	0.003	0.067	0.034	0.061	0.054	0.000	1.642
1971	0.131	0.214	0.272	0.155	0.152	0.000	0.041	0.027	0.072	0.056	0.049	0.004	1.174
1972	0.125	0.257	0.428	0.425	0.361	0.000	0.000	0.065	0.072	0.052	0.054	0.000	1.839
1973	0.134	0.239	0.319	0.383	0.126	0.000	0.000	0.053	0.072	0.000	0.045	0.000	1.371
1974	0.236	0.209	0.354	0.196	0.206	0.067	0.000	0.049	0.060	0.061	0.054	0.006	1.498
1975	0.250	0.275	0.133	0.115	0.101	0.000	0.012	0.000	0.071	0.061	0.054	0.006	1.077
1976	0.198	0.223	0.453	0.195	0.050	0.000	0.061	0.075	0.072	0.061	0.049	0.000	1.437
1977	0.236	0.267	0.215	0.218	0.254	0.000	0.000	0.082	0.071	0.059	0.054	0.006	1.403
1978	0.109	0.130	0.203	0.353	0.277	0.000	0.018	0.041	0.072	0.055	0.000	0.003	1 101
1979	0.095	0.200	0.259	0.504	0.000	0.000	0.000	0.000	0.072	0.061	0.038	0.000	1.069
1980	0.103	0.000	0.400	0.479	0.406	0.047	0.011	0.047	0.066	0.060	0.054	0.007	1.914
1982	0.206	0.268	0.416	0.448	0.400	0.000	0.065	0.072	0.058	0.058	0.036	0.006	2.073
1983	0.184	0.108	0.379	0.367	0.395	0.000	0.020	0.084	0.058	0.000	0.045	0.000	1.640
1984	0.000	0.188	0,387	0.070	0.186	0.000	0.056	0.010	0.042	0.033	0.054	0.000	1.027
1985	0.040	0.253	0.339	0.481	0.281	0.060	0.000	0.083	0.072	0.061	0.044	0.000	1.713
1986	0.198	0.209	0.306	0.448	0.319	0.000	0.065	0.050	0.067	0.061	0.000	0.000	1.725
1987	0.129	0.311	0.142	0.414	0.001	0.000	0.061	0.082	0.045	0.061	0.036	0.000	1.281
1988	0.060	0.322	0.405	0.502	0.242	0.041	0.054	0.065	0.047	0.060	0.054	0.007	1.858
1989	0.069	0.014	0.262	0.388	0.387	0.000	0.007	0.084	0.072	0.053	0.053	0.007	1.397
1990	0.128	0.233	0.285	0.367	0.232	0.000	0.062	0,076	0.024	0.061	0.054	0.005	1.528
1991	0.247	0.226	0.440	0.413	0.415	0.000	0.046	0.084	0.049	0.061	0.050	0.007	2.039
1992	0.250	0.270	0.277	0.453	0.331	0.000	0.030	0.081	0.072	0.054	0.052	0.007	1.8//
1993	0.182	0.173	0.220	0.347	0.434	0.004	0.019	0.081	0.072	0.061	0.054	0.000	1.646
1994	0.122	0.350	0.418	0.287	0.259	0.000	0.000	0.030	0.072	0.001	0.047	0.001	1 100
1995	0.158	0.246	0.414	0.201	0.000	0.000	0.050	0.020	0.004	0.000	0.047	0.000	1 402
1002	0.151	0.201	0.4/1	0.205	0.141	0.000	0.000	0.084	0.072	0.055	0.049	0,000	1.926
1008	0 141	0.095	0.193	0.326	0.282	0.000	0.000	0.060	0.072	0.048	0.051	0.007	1.383
1000	0.081	0.187	0.263	0.209	0.202	0.000	0.000	0,078	0.029	0.053	0.054	0,001	0.956
2000	0.176	0.198	0.403	0.500	0.069	0.000	0.031	0.071	0.062	0.059	0.054	0,007	1.631
2001	0.054	0.000	0.187	0.257	0.436	0.071	0.000	0.080	0.059	0.061	0.054	0.000	1.259
2002	0.220	0.349	0.336	0.358	0.280	0.000	0.060	0.084	0.031	0.061	0.054	0.000	1.833
2003	0.182	0,288	0.369	0.444	0.023	0.000	0.000	0.084	0.053	0.058	0.048	0.005	1.554
2004	0.208	0.258	0.346	0.358	0.370	0.055	0.031	0.081	0.072	0.059	0.054	0.007	1.899
2005	0.247	0.172	0.442	0.347	0.242	0.000	0.045	0.061	0.049	0.038	0.031	0.000	1.674
Average	0.168	0.230	0.324	0.327	0.245	0.015	0.026	0.063	0.060	0.049	0.047	0.003	1.556
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
Average					2002	20.02563	5-2-2-2-2-1	2023 5 10 10 10 10					
(m3/s)	0.063	0.089	0.121	0.122	0.100	0.006	0.010	0.024	0.023	0.018	0.018	0.001	0.049

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	В	81G10		1	c					
Voor	0.4	Nou	Dec	lan	Monthly in	rigation der Mar	nand in 10 ⁴ Apr	6m^3 May	lun	Ini	Aug	Son	Total
1925	0.204	0.149	0.184	0.078	0.000	0.041	0.129	0.131	0.119	0.047	0.113	0.084	1.145
1926	0.135	0.120	0.196	0.014	0.058	0.090	0.119	0.115	0.119	0.066	0.112	0.085	1.230
1927	0.000	0.075	0.134	0.035	0.122	0.103	0.088	0.130	0.119	0.106	0.089	0.080	1.082
1928	0.114	0.087	0.140	0.053	0.000	0.000	0.114	0.136	0.100	0.092	0.082	0.073	0.992
1929	0.053	0.013	0.067	0.061	0.000	0.014	0.002	0.126	0.113	0.096	0.112	0.067	0.723
1930	0.137	0.120	0.000	0.132	0.052	0.029	0.047	0.139	0.109	0.039	0.113	0.080	1 047
1932	0.008	0.067	0.080	0.000	0.032	0.088	0.120	0.139	0.112	0.110	0.110	0.080	1.100
1933	0.118	0.000	0.105	0.008	0.000	0.005	0.093	0.125	0.097	0.110	0.085	0.058	0.803
1934	0.019	0.000	0.167	0.207	0.082	0.126	0.132	0.107	0.119	0.110	0.113	0.059	1.241
1935	0.096	0.172	0.139	0.000	0.000	0.000	0.120	0.102	0.119	0.086	0.113	0,009	0.957
1936	0.139	0.087	0.157	0.013	0.000	0.014	0.101	0.139	0.119	0.110	0.113	0.069	1.061
1937	0.105	0.139	0.002	0.000	0.139	0.079	0.000	0.128	0.113	0.108	0.109	0.000	0.922
1938	0.084	0.154	0.001	0.078	0.000	0.000	0.118	0.099	0.107	0.068	0.106	0.059	0.874
1939	0.031	0.160	0.000	0.206	0.097	0.000	0.095	0.048	0.012	0.091	0.094	0.052	0.923
1941	0.080	0.177	0.000	0.105	0.155	0.000	0.132	0.139	0.119	0.110	0.113	0.085	1.215
1942	0.139	0.126	0.120	0.218	0.025	0.000	0.000	0.083	0.119	0.001	0.113	0.085	1.032
1943	0.139	0.124	0.226	0.087	0.000	0.114	0.132	0.139	0.102	0.110	0.113	0.085	1.371
1944	0.036	0.177	0.205	0.081	0.000	0.132	0.091	0.120	0.100	0.091	0.094	0.067	1.194
1945	0.057	0.094	0.200	0.000	0.000	0.000	0.106	0.137	0.117	0.101	0.113	0.085	1.011
1946	0.039	0.044	0.074	0.060	0.062	0.000	0.128	0.104	0.087	0.101	0.113	0.085	0.897
1947	0.091	0.145	0.070	0.009	0.065	0.000	0.081	0.139	0.119	0.103	0.105	0.079	0.996
1949	0.126	0.050	0.000	0.143	0.033	0.047	0.039	0.100	0.114	0.110	0.112	0.085	0.960
1950	0.124	0.070	0.060	0.184	0.155	0.004	0.017	0.095	0,119	0.109	0.083	0.057	1.075
1951	0.003	0.133	0.180	0.081	0.071	0.008	0.081	0.137	0.094	0.088	0.112	0.084	1.074
1952	0.060	0.112	0.000	0.023	0.000	0.032	0.023	0.139	0.119	0.104	0.113	0.082	0.807
1953	0.121	0.009	0.173	0.052	0.014	0.105	0.000	0.122	0.115	0.110	0.097	0.072	0.991
1954	0.059	0.000	0.025	0.069	0.000	0.000	0.091	0.101	0.116	0.109	0.113	0.085	0.769
1955	0.067	0.017	0.080	0.032	0.000	0.056	0.114	0.120	0.118	0.100	0.102	0.040	0.972
1957	0.021	0.122	0 105	0.000	0.064	0.127	0.066	0.139	0.112	0.105	0.113	0.061	1.038
1958	0.110	0.090	0.070	0.000	0.000	0.067	0.115	0.139	0.119	0.090	0.113	0.081	0.995
1959	0.129	0.101	0.071	0 164	0.000	0.083	0.000	0.041	0.108	0.104	0.112	0.085	0.999
1960	0.133	0.008	0.000	0.149	0.000	0.000	0.067	0.126	0.068	0.107	0.111	0.046	0.815
1961	0.094	0.124	0.099	0.076	0.080	0.000	0.018	0.139	0.116	0.110	0.102	0.074	1.032
1962	0.112	0.000	0.090	0.211	0.132	0.080	0.098	0.121	0.039	0.085	0.109	0.085	1 322
1963	0.090	0.113	0.091	0.084	0.053	0.089	0.115	0.139	0.119	0.110	0.112	0.050	0.994
1965	0.127	0.111	0.182	0.000	0.000	0.130	0.118	0.132	0.101	0.110	0.089	0.080	1.182
1966	0.054	0.116	0.084	0.000	0.000	0.050	0.044	0.138	0.119	0.080	0.113	0.085	0.883
1967	0.087	0.090	0.108	0.126	0.054	0.128	0.090	0.104	0.084	0.109	0.111	0.085	1.176
1968	0.096	0.039	0.000	0.042	0.068	0.000	0.090	0.139	0.119	0.101	0.113	0.065	0.874
1969	0.000	0.110	0.104	0.213	0.094	0.117	0.115	0.136	0.115	0.093	0.113	0.085	1.295
1970	0.102	0.139	0.034	0.000	0.144	0.065	0.078	0.125	0.088	0.110	0.115	0.083	0.778
1971	0.047	0.095	0.163	0.127	0.094	0.000	0.054	0.123	0.119	0.102	0.113	0.000	1.032
1973	0.049	0.081	0.083	0.096	0.000	0.011	0.060	0.113	0.119	0.031	0.106	0.002	0.753
1974	0.126	0.059	0.108	0.000	0.000	0.123	0.045	0.109	0.109	0.110	0.113	0.085	0.988
1975	0.136	0.108	0.000	0.000	0.000	0.000	0.085	0.066	0.119	0.110	0.113	0.085	0.821
1976	0.097	0.070	0.182	0.000	0.000	0.000	0.126	0.131	0.119	0.110	0.108	0.000	0.943
1977	0.126	0.102	0.012	0.000	0.015	0.000	0.010	0.138	0.119	0.109	0.113	0.085	0.827
1978	0.031	0.005	0.005	0.073	0.032	0.033	0.050	0.136	0.119	0.110	0.108	0.000	0.767
1980	0.071	0.000	0.044	0.000	0.000	0.000	0.121	0.130	0.119	0.110	0.100	0.050	0.745
1981	0.048	0.056	0.142	0.167	0.128	0.106	0.084	0.108	0.115	0.109	0.113	0.085	1.261
1982	0.103	0.103	0.154	0.144	0.154	0.000	0.128	0.129	0.107	0.107	0.098	0.085	1.312
1983	0.087	0.000	0.127	0.085	0.120	0.000	0.091	0.139	0.108	0.014	0.105	0.020	0.895
1984	0.000	0.044	0.133	0.000	0.000	0.000	0.121	0.078	0.095	0.087	0.113	0.071	1.054
1985	0.000	0.092	0.057	0.169	0.054	0.000	0.129	0.138	0.115	0.110	0.054	0.000	0.957
1987	0.046	0.135	0.000	0.119	0.000	0.000	0.125	0.137	0.097	0.110	0.098	0.061	0.928
1988	0.000	0.143	0.146	0.185	0.006	0.101	0.119	0.123	0.099	0.109	0.113	0.085	1.229
1989	0.002	0.000	0.044	0.100	0.114	0.000	0.081	0.139	0.119	0.103	0.112	0.085	0.900
1990	0.045	0.077	0.059	0.085	0.000	0.000	0.126	0.132	0.081	0.110	0.113	0.084	0.911
1991	0.134	0.072	0.172	0.118	0.135	0.022	0.113	0.139	0.101	0.110	0.109	0.085	1.310
1992	0.136	0.104	0.054	0.148	0.071	0.053	0.100	0.136	0.119	0.104	0.111	0.085	1.223
1993	0.085	0.055	0.014	0.070	0.149	0.072	0.091	0.130	0.119	0.110	0.113	0.074	0.997
1994	0.041	0.104	0.153	0.028	0.019	0.000	0.029	0.086	0.112	0.035	0.107	0.075	0.829
1996	0.062	0.053	0.195	0.000	0.000	0.016	0.076	0.111	0.119	0.110	0.110	0.032	0.883
1997	0.098	0.000	0.192	0.084	0.149	0.122	0.107	0.139	0.119	0.105	0.108	0.075	1.299
1998	0.055	0.055	0.000	0.056	0.035	0.000	0.068	0.118	0.119	0.099	0.111	0.085	0.802
1999	0.011	0.043	0.044	0.000	0.000	0.000	0.038	0.134	0.084	0.103	0.113	0.081	0.652
2000	0.081	0.051	0.145	0.183	0.000	0.046	0.101	0.128	0.111	0.108	0.113	0.085	1.152
2001	0.000	0.000	0.000	0.008	0.150	0.126	0.049	0,135	0.108	0.110	0.113	0.025	1 103
2002	0.085	0.105	0.119	0.141	0.000	0.002	0.068	0.139	0.103	0.108	0.108	0.084	1.073
2004	0.104	0.095	0.103	0.078	0.100	0.112	0.101	0.137	0.119	0.108	0.113	0.085	1.257
2005	0.134	0.032	0.173	0.070	0.007	0.000	0.112	0.120	0,100	0.091	0.094	0.067	1.000
Average	0.078	0.081	0.094	0.077	0.049	0.044	0.084	0.121	0.108	0.097	0.106	0.067	1.004
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
(m3/s)	0.029	0.031	0.035	0.029	0.020	0.016	0.032	0.045	0.042	0.036	0.040	0.026	0.032
	0.020	2,001	2.000	2.04.2	0.040				10101100	000000	100000000000000000000000000000000000000	-2012	1000000

FIXED AREA IR	RIGATION	DEMAND T	IME SERIES	E	881H01			ACA7					
Year	Oct	Nov	Dec	lan	Monthly in Feb	Mar	mand in 10 Apr	маv Мау	Jun	lut	Aug	Sep	Total
1925	0.204	0.016	0.025	0.008	0.000	0.006	0.025	0.031	0.028	0.014	0.020	0.001	0.178
1926	0.011	0.012	0.026	0.000	0.003	0.013	0.023	0.029	0.028	0.017	0.020	0.001	0.186
1927	0.000	0.006	0.017	0.001	0.013	0.015	0.019	0.031	0.028	0.023	0.017	0.001	0.170
1928	0.009	0.007	0.018	0.004	0.000	0.000	0.023	0.032	0.025	0.021	0.016	0.000	0.155
1929	0.000	0.000	0.006	0.005	0.000	0.002	0.006	0.031	0.027	0.021	0.020	0.000	0.119
1930	0.012	0.012	0.024	0.017	0.000	0.004	0.015	0.032	0.027	0.023	0.020	0.001	0.159
1932	0.006	0.004	0.009	0.000	0.008	0.013	0.024	0.032	0.028	0.023	0.020	0.001	0.168
1933	0.009	0.000	0.013	0.000	0.000	0.001	0.020	0.030	0.025	0.023	0.016	0.000	0.137
1934	0.000	0.000	0.022	0.028	0.007	0.018	0.025	0.028	0.028	0.023	0.020	0.000	0.200
1935	0.006	0.020	0.018	0.000	0.000	0.000	0.024	0.027	0.028	0.020	0.020	0.000	0.162
1936	0.012	0.007	0.021	0.000	0.000	0.002	0.021	0.032	0.028	0.023	0.020	0.000	0.167
1937	0.007	0.015	0.000	0.000	0.015	0.012	0.023	0.027	0.025	0.017	0.019	0.000	0.143
1939	0.000	0.018	0.000	0.028	0.009	0,000	0.020	0.019	0.012	0.023	0.020	0.000	0.149
1940	0.002	0.000	0.002	0.013	0.017	0.002	0.007	0.030	0.025	0.021	0.018	0.000	0.136
1941	0.004	0.020	0.000	0.013	0.017	0.000	0.025	0.032	0.028	0.023	0.020	0.001	0.185
1942	0.012	0.013	0.015	0.030	0.000	0.000	0.000	0.024	0.028	0.007	0.020	0.001	0.151
1943	0.012	0.013	0.031	0.010	0.000	0.017	0.025	0.032	0.026	0.023	0.020	0.001	0.210
1944	0.000	0.020	0.028	0.009	0.000	0.019	0.019	0.030	0.025	0.021	0.018	0.000	0.161
1945	0.000	0.001	0.008	0.005	0.004	0.000	0.025	0.027	0.023	0.022	0.020	0.001	0.137
1947	0.005	0.016	0.007	0.007	0.007	0.000	0.023	0.032	0.028	0.022	0.020	0.000	0.169
1948	0.000	0.000	0.023	0.000	0.008	0.017	0.018	0.030	0.027	0.020	0.019	0.000	0.162
1949	0.010	0.002	0.000	0.019	0.000	0.007	0.012	0.027	0.027	0.023	0.020	0.001	0.148
1950	0.010	0.005	0.005	0.025	0.017	0.000	0.008	0.026	0.028	0.023	0.016	0.000	0.164
1951	0.000	0.014	0.024	0.009	0.005	0.001	0.018	0.032	0.024	0.020	0.020	0.001	0.170
1952	0.001	0.000	0.000	0.000	0.000	0.003	0.003	0.032	0.027	0.023	0.018	0.000	0.153
1954	0.001	0.000	0.000	0.007	0.000	0.000	0.020	0.027	0.027	0.023	0.020	0.001	0.127
1955	0.002	0.000	0.009	0.026	0.000	0.008	0.023	0.028	0.028	0.022	0.019	0.000	0.165
1956	0.010	0.016	0.006	0.001	0.000	0.006	0.021	0.030	0.026	0.020	0.019	0.000	0.156
1957	0.000	0.013	0 013	0.000	0.004	0.018	0.016	0.032	0.027	0.023	0.020	0.000	0.166
1958	0.008	0.008	0.007	0.000	0.000	0.010	0.023	0.032	0.028	0.020	0.020	0.001	0.158
1959	0.011	0.010	0.007	0.022	0.000	0.012	0.006	0.018	0.020	0.022	0.020	0.000	0.140
1961	0.006	0.013	0.012	0.008	0.007	0.000	0.008	0.032	0.028	0.023	0.019	0.000	0.156
1962	0.008	0.000	0.010	0.028	0.014	0.012	0.020	0.030	0.016	0.019	0.020	0.001	0.180
1963	0.005	0.011	0.010	0.015	0.015	0.017	0.022	0.030	0.028	0.023	0.020	0.000	0.198
1964	0.000	0.006	0.000	0.009	0.003	0.013	0.023	0.032	0.028	0.023	0.020	0.000	0.158
1965	0.010	0.011	0.024	0.000	0.000	0.019	0.023	0.031	0.025	0.023	0.017	0.001	0.186
1966	0.000	0.012	0.009	0.000	0.000	0.007	0.015	0.032	0.028	0.013	0.020	0.001	0.177
1968	0.005	0.000	0.000	0.003	0.005	0.000	0.019	0.032	0.028	0.022	0.020	0.000	0.136
1969	0.000	0.011	0.012	0.029	0.009	0.017	0.023	0.032	0.027	0.021	0.020	0.001	0.203
1970	0.007	0.015	0.001	0.000	0.016	0.010	0.018	0.030	0.023	0.023	0.020	0.000	0.163
1971	0.000	0.004	0.004	0.000	0.000	0.000	0.022	0.025	0.028	0.023	0.020	0.001	0.127
1972	0.000	0.009	0.021	0.016	0.009	0.000	0.014	0.030	0.028	0.022	0.020	0.000	0.169
1973	0.000	0.008	0.009	0.000	0.000	0.002	0.013	0.029	0.025	0.012	0.020	0.001	0.157
1975	0.012	0.010	0.000	0.000	0.000	0.000	0.019	0.022	0.028	0.023	0.020	0.001	0.135
1976	0.006	0.005	0.024	0.000	0.000	0.000	0.025	0.031	0.028	0.023	0.020	0.000	0.162
1977	0.010	0.010	0.000	0.000	0.000	0.000	0.007	0.032	0.028	0.023	0.020	0.001	0.132
1978	0.000	0.000	0.000	0.008	0.000	0.008	0.019	0.027	0.028	0.022	0.005	0.001	0.119
1979	0.000	0.009	0.002	0.002	0.000	0.001	0.018	0.032	0.028	0.023	0.020	0.000	0.130
1980	0.003	0.000	0.005	0.000	0.000	0.000	0.024	0.031	0.023	0.023	0.019	0.001	0.191
1982	0.007	0.010	0.020	0.019	0.017	0.000	0.025	0.031	0.026	0.023	0.018	0.001	0.197
1983	0.005	0.000	0.016	0.009	0.012	0.000	0.020	0.032	0.026	0.009	0.019	0.000	0.149
1984	0.000	0.001	0.017	0.000	0.000	0.000	0.024	0.023	0.024	0.020	0.020	0.000	0.130
1985	0.000	0.008	0.011	0.022	0.000	0.017	0.001	0.032	0.028	0.023	0.019	0.000	0.162
1986	0.006	0.003	0.008	0.019	0.004	0,000	0.025	0.028	0.027	0.023	0.012	0.000	0.155
1987	0.000	0.014	0.000	0.015	0.000	0.000	0.024	0.030	0.025	0.023	0.020	0.001	0.197
1989	0.000	0.000	0.003	0.012	0.011	0,000	0.018	0.032	0.028	0.022	0.020	0.001	0.148
1990	0.000	0.006	0.005	0.009	0.000	0.000	0.025	0.031	0.022	0,023	0.020	0.001	0.144
1991	0.011	0.005	0.023	0.015	0.014	0.003	0.023	0.032	0.025	0.023	0.020	0.001	0.196
1992	0.012	0.010	0.004	0.019	0.005	0.008	0.021	0.032	0.028	0.022	0.020	0.001	0.183
1993	0.005	0.000	0.000	0.007	0.016	0.011	0.019	0.032	0.028	0.023	0.020	0.000	0.162
1994	0.000	0.018	0.020	0.000	0.000	0.007	0.010	0.025	0.028	0.023	0.020	0.001	0.154
1995	0.001	0.007	0.026	0,000	0.000	0.002	0.021	0.023	0.028	0.023	0.020	0.000	0.149
1997	0.006	0.000	0.026	0.009	0.016	0.018	0.022	0.032	0.028	0.023	0.020	0.000	0.200
1998	0.000	0.003	0.000	0.005	0.000	0.000	0.016	0.029	0.028	0.022	0.020	0.001	0.124
1999	0.000	0.001	0.003	0.000	0,000	0.000	0.012	0.032	0.023	0.022	0.020	0.001	0.113
2000	0.004	0.002	0.019	0.024	0.000	0.007	0.021	0.031	0.027	0.023	0.020	0.001	0.179
2001	0.000	0.000	0.000	0.000	0.017	0.018	0.013	0.032	0.026	0.023	0.020	0.000	0.150
2002	0.009	0.018	0.015	0.008	0.000	0.009	0.024	0.032	0.025	0.023	0.020	0.000	0.167
2005	0.007	0.009	0.012	0.008	0.010	0.016	0,021	0.032	0.028	0.023	0.020	0.001	0.188
2005	0.011	0.000	0.023	0.007	0.000	0.000	0.023	0.030	0.025	0.020	0.018	0.000	0.157
													S. 275744
Average	0.007	0.007	0.011	0.009	0.004	0.006	0.018	0.030	0.026	0.021	0.019	0.001	0.159
	31	30	31	31	28.25	31	30	31	30	31	31	30	365.25
(m3/s)	0.003	0.003	0.004	0.003	0.002	0.002	0.007	0.011	0.010	0.008	0.007	0.000	0.005

FIXED AREA IF	RIGATION	DEMAND T	IME SERIES	B	B1H10								
Martin	• •		D eer		Monthly in	igation der	nand in 10 ⁷	%m^3		i.i.	A.u.a.	Con	Total
tear 1025	0.204	0.055	0.083	0.049	0.000	0.000	0.035	0.043	0.039	0.012	0.028	0.000	0.361
1925	0.038	0.045	0.087	0.025	0.030	0.014	0.031	0.038	0.039	0.018	0.028	0.000	0.395
1927	0.000	0.030	0.066	0.032	0.053	0.018	0.022	0.043	0.039	0.031	0.021	0.000	0.355
1928	0.031	0.034	0.068	0.039	0.000	0.000	0.030	0.045	0.033	0.027	0.018	0.000	0.325
1929	0.011	0.007	0,042	0.042	0.003	0.000	0.000	0.041	0.037	0.028	0.028	0.000	0.240
1930	0.039	0.045	0.000	0.068	0.029	0.000	0,008	0.046	0.036	0.009	0.028	0.000	0.307
1931	0.016	0.021	0.082	0.054	0.021	0.001	0.016	0.028	0.037	0.033	0.028	0.000	0.337
1932	0.026	0.027	0.047	0.000	0.041	0.013	0.032	0.046	0.039	0.033	0.027	0.000	0.331
1031	0.033	0.000	0.056	0.022	0.003	0.000	0.025	0.041	0.032	0.033	0.019	0.000	0.406
1935	0.025	0.063	0.068	0.000	0.000	0.000	0.032	0.034	0.039	0.025	0.028	0.000	0.314
1936	0.039	0.034	0.074	0.024	0.000	0.000	0.026	0.046	0.039	0.033	0.028	0.000	0.343
1937	0.028	0.052	0.017	0.000	0.058	0.011	0.000	0.042	0.037	0.032	0.027	0.000	0.305
1938	0.022	0.057	0.017	0.048	0.000	0.000	0.031	0.033	0.035	0.019	0.026	0.000	0.288
1939	0.004	0.059	0.000	0.093	0.044	0.000	0.023	0.016	0.003	0.033	0.028	0.000	0.303
1940	0.017	0.005	0.032	0,059	0.064	0.000	0.000	0.039	0,033	0.026	0.022	0.000	0.298
1941	0.020	0.065	0.011	0.058	0.064	0.000	0.035	0.046	0.039	0.033	0.028	0.000	0.399
1942	0.039	0.047	0.061	0.097	0.019	0.000	0.000	0.027	0.034	0.000	0.028	0.000	0.333
1945	0.005	0.047	0.098	0.052	0.000	0.022	0.000	0.039	0.034	0.026	0.022	0.000	0.390
1945	0.012	0.036	0.089	0.000	0.000	0.000	0.027	0.045	0.039	0.030	0.028	0.000	0.307
1946	0.006	0.019	0.045	0.042	0.032	0.000	0.034	0.034	0.029	0.030	0.028	0.000	0.299
1947	0.024	0.053	0.043	0.045	0.040	0.000	0.031	0.046	0.039	0.030	0.028	0.000	0.380
1948	0.000	0.015	0.079	0.000	0.042	0.022	0.019	0.041	0.036	0.024	0.026	0.000	0.305
1949	0.035	0.021	0.012	0.072	0.022	0.000	0.005	0.033	0.038	0.033	0.028	0.000	0.298
1950	0.035	0.028	0.039	0.086	0.064	0.000	0.000	0.031	0.039	0.032	0.018	0.000	0.372
1951	0.000	0.050	0.082	0.050	0.035	0.000	0.019	0.045	0.031	0.026	0.028	0.000	0.366
1952	0.014	0.043	0.016	0.028	0.000	0.000	0.000	0.046	0.039	0.031	0.028	0.000	0.244
1953	0.034	0.006	0.079	0.039	0.015	0.019	0.000	0.040	0.038	0.035	0.023	0.000	0.240
1954	0.015	0.000	0.020	0.045	0.000	0.003	0.020	0.036	0.039	0.030	0.025	0.000	0.324
1956	0.035	0.054	0.041	0.032	0.000	0.000	0.026	0.040	0.035	0,025	0.025	0.000	0.313
1957	0.000	0.046	0.056	0.000	0.033	0.026	0.014	0.046	0.037	0.031	0.028	0.000	0.317
1958	0.030	0.035	0.043	0.000	0.002	0.007	0.030	0.046	0.039	0.026	0.028	0.000	0.286
1959	0.036	0.039	0.044	0.079	0.000	0.012	0.000	0.013	0.036	0.031	0.028	0.000	0.317
1960	0.037	0.006	0.000	0.074	0.000	0.000	0.015	0.041	0.023	0.032	0.027	0.000	0.254
1961	0.025	0.047	0.054	0.048	0.038	0.000	0.000	0.046	0.038	0.033	0.025	0.000	0.353
1962	0.031	0.002	0.050	0.095	0.056	0.011	0.025	0.040	0.013	0.024	0.027	0.000	0.373
1963	0.023	0.043	0.051	0.051	0.039	0.023	0.027	0.040	0.039	0.033	0.028	0.000	0.326
1964	0.002	0.030	0.024	0.031	0.029	0.014	0.030	0.040	0.034	0.033	0.021	0.000	0.357
1966	0.012	0.044	0.048	0.000	0.000	0.001	0,007	0.045	0.039	0.023	0.028	0.000	0.247
1967	0.022	0.035	0.057	0.066	0.029	0.026	0.022	0.034	0.028	0.032	0.028	0.000	0.379
1968	0.026	0.017	0.014	0.035	0.034	0.000	0.022	0.046	0.039	0.030	0.028	0.000	0.291
1969	0.000	0.042	0.055	0.095	0.043	0.023	0.030	0.045	0.038	0.027	0.028	0.000	0.427
1970	0.027	0.052	0.030	0.015	0.060	0.006	0.018	0.041	0.029	0.033	0.028	0.000	0.339
1971	0.009	0.025	0.036	0.000	0.000	0.000	0.028	0.030	0.039	0.031	0.027	0.000	0.226
1972	0.008	0.036	0.076	0.066	0.043	0.000	0.010	0.040	0.039	0.050	0.028	0.000	0.377
1973	0.010	0.032	0.048	0.033	0.000	0.000	0.012	0.036	0.035	0.033	0.028	0.000	0.290
1975	0.038	0.041	0.000	0.000	0.000	0,000	0.020	0.022	0.039	0.033	0.028	0.000	0.222
1976	0.026	0.028	0.082	0.006	0.000	0.000	0.034	0.043	0.039	0.033	0.027	0.000	0.318
1977	0.035	0.039	0.021	0.012	0.015	0.000	0.000	0.045	0.039	0.032	0.028	0.000	0.267
1978	0.004	0.004	0.018	0.047	0.021	0.003	0.022	0.034	0.039	0.031	0.000	0.000	0.223
1979	0.000	0.039	0.032	0.035	0.000	0.000	0.019	0.045	0.039	0.033	0.027	0.000	0.268
1980	0.017	0.000	0.033	0.000	0.010	0.000	0.032	0.043	0.039	0.033	0.024	0.000	0.231
1981	0.010	0.025	0.009	0.080	0.055	0.019	0.020	0.030	0.036	0.032	0.023	0.000	0.443
1982	0.022	0.000	0.063	0.051	0.052	0.000	0.023	0.046	0.036	0.001	0.026	0.000	0.319
1984	0.000	0.019	0.065	0.000	0.000	0.000	0.032	0.026	0.031	0.025	0.028	0.000	0.227
1985	0.000	0.035	0.053	0.080	0.022	0.023	0.000	0.045	0.039	0.033	0.025	0.000	0.357
1986	0.026	0.024	0.045	0.072	0.032	0.000	0.035	0.036	0.038	0.033	0.009	0.000	0.350
1987	0.009	0.050	0.002	0.063	0.000	0.000	0.033	0.045	0.032	0.033	0.023	0.000	0.291
1988	0.000	0.053	0.070	0.086	0.012	0.018	0.032	0.041	0.033	0.032	0.028	0.000	0.404
1989	0.000	0.000	0.033	0.055	0.050	0.000	0.019	0.046	0.039	0.030	0.028	0.000	0.302
1990	0.008	0.030	0.039	0.051	0.010	0.000	0.034	0.045	0.027	0.033	0.028	0.000	0.433
1991	0.038	0.020	0.075	0.003	0.035	0.002	0.025	0.045	0.039	0.031	0.028	0.000	0.393
1993	0.022	0.015	0.022	0.046	0.062	0.008	0.022	0.045	0.039	0.033	0.028	0.000	0.342
1994	0.007	0.060	0.074	0.030	0.017	0.001	0.002	0.031	0.039	0.033	0.026	0.000	0.320
1995	0.018	0.033	0.072	0.008	0.000	0.000	0.025	0.028	0.037	0.008	0.026	0.000	0.257
1996	0.014	0.022	0.087	0.009	0.000	0.000	0.017	0,037	0.039	0.033	0.027	0.000	0.285
1997	0.026	0.000	0.086	0.051	0.062	0.024	0.028	0.046	0.039	0.031	0.027	0.000	0.419
1998	0.012	0.022	0.015	0.040	0.023	0.000	0.015	0.039	0.039	0.029	0.027	0.000	0.202
1999	0.000	0.018	0.055	0.010	0.000	0.000	0.005	0.044	0.028	0.032	0.028	0,000	0.361
2000	0.020	0.021	0.014	0.023	0.062	0,026	0.009	0.044	0.036	0,032	0.028	0.000	0.274
2002	0.031	0.060	0.052	0.049	0.022	0.005	0.033	0.046	0.028	0.033	0.028	0.000	0.387
2003	0.022	0.044	0.061	0.071	0.000	0.000	0.015	0.046	0.034	0.032	0.027	0.000	0.351
2004	0.028	0.037	0.055	0.049	0.045	0.021	0.026	0.045	0.039	0.032	0.028	0.000	0.405
2005	0.038	0.014	0.080	0.046	0.012	0.000	0.029	0.039	0.033	0.026	0.022	0.000	0.340
		2					0.001	0.010	0.000	0.000	0.000	0.000	0.000
Average	0.022	0.031	0.050	0.044	0.023	0.006	0.021	0.040	0.036	21	0.026	30	365.25
Average	31	30	51	51	20.23	21	50	21	30	31	51	50	565,25
(m3/s)	0.008	0.012	0.019	0.016	0.010	0.002	0.008	0.015	0.014	0.011	0.010	0.000	0.010

Appendix D : Detailed Information Regarding the Determination of Irrigation Demands Schoeman & Vennote undertook a field by field assessment of the crop areas and types for most of the Groot Letaba Catchment, excluding the Politsi Government Water Control Area (GWCA), supplied from Magoebaskloof Scheme, and the Middle/Klein Letaba. This assessment provides theoretical field edge water requirements for each quinary which totalled 168 Mm³/a for the study area for the period 1925 – 2005 (Schoeman & Vennote's report gives a total of 171 Mm³/a which is based on demands for the period 1912 to 2005 (hydrological years) instead of the 1925 to 2004 period (hydrological years) adopted for this study). At a later stage, Schoeman & Vennote provided a coverage (irrperproperty) that could be used to break the irrigated areas within each quinary down into :

- GLWUA
- Other surface water irrigators not part of the GLWUA
- Groundwater

This breakdown was then used to determine what proportion of the surface irrigation in a quinary was undertaken by the GLWUA. This proportion was then used to determine the GLWUA's theoretical surface water requirement in each quinary (105.5 Mm³/a) and the remaining surface requirement was assumed to represent the surface water requirement of local users (62.05 Mm³/a). The total area irrigated from surface water in irrperproperty appears to include some future developments and is 5% more than that in the field assessment report. However, because the irrperproperty coverage was only used to determine the ratio of local to GLWUA demands, this discrepancy will have had a negligible effect on the demands used.

The GLWUA's total theoretical requirements upstream (13.1 Mm³/a) and downstream (92.4 = 105.5 - 13.1) of the Tzaneen Dam, were determined by summing the relevant GLWUA quinary requirements. In addition, emerging farmers upstream of the Letaba Ranch weir may be allocated a portion of the allocation from Tzaneen Dam (22.2 = 26 475 ha at 838 mm/ha – personal correspondence from Jurg Venter). The planned theoretical allocations for the GLWUA of 127.7 Mm³/a (127.7 = 105.5 + 22.2) were greater than the total scheduled field edge demands of 10 Mm³/a upstream and 80.5 Mm³/a downstream of Tzaneen Dam, giving a total of 90.5 Mm³/a. This effectively reduced the application rates below the theoretical rates so that the increased area irrigated by the GLWUA still uses the volume of water corresponding to the scheduled volume.

The local demands remaining after deducting the GLWUA's theoretical surface water requirement in each quinary did not include the Politsi GWCA of about 11 Mm³/a and the demands from the Middle Letaba of 51 Mm³/a estimated from WRSM2000 and the 2005/6 *Operating Analysis* Report. Combining the local irrigation demands upstream of the Kruger National Park gives a total local (i.e. non-GLWUA) irrigation demand of 124 Mm³/a (124 = 62 + 11 + 51). For simplicity, in the Middle Letaba, the losses and urban demands supplied from the canal from Nsami were combined with the agricultural demands giving a total "agricultural" demand of 132.6 Mm³/a (61 + 11 + 59.6).

		nt				Local (Mm³/a)							Groo	ot Letaba W	ater Users'	Associatior	n (Mm ³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate		Sub-totals	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	п	0	р	q	r	s	t
GLA	A10	u/s Dap Naude	0.00 0	H Schoema n	0%	0.00	0.0				0.0								
GLA	A01	u/s Ebenezer Dam	1.14 1	H Schoema n	100%	1.14	1.1	1.1	A01irr.DEM		0.0								
GLA	B10	u/s Georges Valley canal offtake	0.58	H Schoema n	55%	0.32					0.3	13.1	13.10	12.98	10.0		-3.1	10.0	GL_usTZ.D EM
GLA	B12		0.88	H Schoema n	28%	0.25					0.6								
GLA	B14	u/s Redbank weir offtake to Pusela Canal	3.33	H Schoema n	20%	0.67	6.5	7.4	XusTZ.DEM		2.7								
GLA	B16	u/s Grysbank weir	0.96	H Schoema n	29%	0.28					0.7								
PRS	B01,B20,B 30	Politsi GWCA (PGWCA) supplied from Magoebaskl oof	11.0 3	Basin Study		11.03	11.0	11.4	Pol_GWCA.DE M										
GLA	B01	Excl PGWCA	12.2 2	H Schoema n	71%	8.72					3.5								

Appendix D: Detailed breakdown of the irrigation demands used in the Letaba

May 2010
		nt						Local (M	lm³/a)				Groo	ot Letaba Wa	ater Users'	Associatior	n (Mm³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate	Cuth-totale	0402-00405	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	n	0	р	q	r	s	t
PRS	B01	Ramadiep a d/s Hans Merensky		H Schoema n			0.8	3.9	Ramadiep.dem										
PRS	B01	Selokwe		H Schoema n			2.0	2.0	Selokwe.dem										
PRS	B01	Politsi		H Schoema n			0.1	see PGWCA											
GLA	B01	B01 remainder including pumps on dam		J Venter			0.8	0.0											
GLA	B01	Additional local demand u/s Tzaneen					0.0												
PRS	B20	Excl PGWCA	0.29	H Schoema n	100%	0.29	0.3	see PGWCA											
PRS	B30	Excl PGWCA (Feasibility WRYM had 1.7Mcm of this demand supplied from the H Merensky Dam)	3.10	H Schoema n	100%	3.10	3.1												
GLA	C10	Portion of		Н		0.00					5.0								

		nt						Local (N	/Im³/a)				Gro	ot Letaba W	ater Users'	Associatior	n (Mm³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate		200-01418	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	п	0	р	q	r	s	t
		C10 supplied from Pusela canal		Schoema n															
GLB	C10	u/s Yamorna weir	14.1 3	H Schoema n	34%	4.77	4.77				4.4	63.4	114.6	104.7	80.5	Factor irrigatio n demand d/s Tzanee n by 70%	-23.4	40.0	GL_TzNw.D EM
GLA	C15	Portion of C15 supplied from Pusela canal		H Schoema n		0.00	0.00	9.5	LocTzNw.DEM		0.4								
GLB	C15	u/s N&N canal offtake	6.78	H Schoema n	11%	0.77	0.77				5.6								
GLB	C01	u/s The Junction weir	10.4 2	H Schoema n	11%	1.13	1.13				9.3								
GLB	E10		5.96	H Schoema n	2%	0.11	0.11				5.8								
GLB	E01	u/s Jasi Weir	32.8 0	H Schoema n	8%	2.67	2.67				30.1								
GLC	F30	u/s Prieska Weir	15.3 4	H Schoema n	13%	1.94	1.94	3.9	LocNw3.DEM		13.4	18.3					-6.8	11.6	GL_Nw3.DE M
GLC	F10		2.37	Н	34%	0.80	0.80				1.6								

Technical Study Module : Review of Water Requirements : Volume 2

		nt						Local (N	lm³/a)				Gro	ot Letaba W	ater Users'	Associatio	n (Mm³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate		200-01418	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	e	f	g	h	i	j	k	Ι	т	п	0	р	q	r	s	t
				Schoema n				-											
GLC	F20		4.55	H Schoema n	26%	1.19	1.19				3.4								
GLD	F01		8.40	H Schoema n	8%	0.68	0.68		100002		7.7	10.7					-3.9	6.7	GL_ds3.DE M
GLD	J10	u/s Letaba Ranch Weir	2.79	H Schoema n	1%	0.01	0.01	0.0	LUCDSS		2.8								
GLD	J10	u/s Letaba Ranch Weir (Unused allocation for emerging farmers)	22.1 9	Jurg Venter's area and applic rate in WPJ71			0.00				22.2	22.2						22.2	GL_HDI.DE M
NW	E20		4.73	H Schoema n	100%	4.73	4.7	4.7	E20-7irr.DEM										
NW	E23		2.62	H Schoema n	100%	2.62	2.6	2.6	E23-7irr.DEM										
NW	E25		8.32	H Schoema n	64%	5.30	5.3	5.3	E25-7irr.DEM		3.0								
NW	E30		1.89	H Schoema n	59%	1.11	1.1	1.1	E30-7irr.DEM		0.8								
MOL	G01		1.56	H Schoema n	100%	1.56	1.6	1.6	G01-7irr.DEM										

		nt						Local (N	lm³/a)				Gro	ot Letaba W	ater Users'	Associatio	n (Mm ³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate	منه مدهدان ۲۰۱۷	sino-cores	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	п	0	p	q	r	s	t
MOL	G10		1.00	H Schoema n	100%	1.00	1.0	1.0	G10-7irr.DEM										
MOL	H01		0.16	H Schoema n	68%	0.11	0.11	see F01			0.1								
MOL	H10		0.33	H Schoema n	100%	0.33	0.3	0.3	H10-7irr.DEM										
GLD	J01		0.11	H Schoema n	0%	0.00	0.00	see F01			0.1								
LET	D10		2.25	H Schoema n	100%	2.25	2.3	2.3	D10-7irr.DEM										
LET	D13		1.61	H Schoema n	100%	1.61	1.6	1.6	D13-7irr.DEM										
LET	D16		11.0 4	H Schoema n	94%	10.41	10.4	10.4	D16-7irr.DEM		0.6								
LET	D01		4.74	H Schoema n	29%	1.36	1.4	1.4	D01-7irr.DEM		3.4								
LET	D28		1.13	H Schoema n	72%	0.82	0.8	0.8	D28-7irr.DEM		0.3								
ML	B82A	Middle Letaba (upper reaches)	6.10	WRSM20 00		6.10	6.1	6.1	na (min-max)	use uniform demand of 0.19m ³ /s									
ML	B82B	Koedoes	18.3 0	WRSM20 00		18.30	18.3	18.3	na	use uniform demand of 0.58m ³ /s									

Technical Study Module : Review of Water Requirements : Volume 2

		nt						Local (N	lm³/a)				Groo	ot Letaba W	ater Users'	Associatio	n (Mm³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate	Cuth totale	200-0043	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	п	0	p	q	r	s	t
ML	B82C	Brandboon tjies	12.9 9	WRSM20 00		12.99	13.0	13.0	na	use uniform demand of 0.41m ³ /s									
ML	B82D	Middle Letaba Dam	see B82 H (Nsa mi)			0.00	0.0	0.0		use uniform demand (as per gauge B8H054) 0.41m ³ /s									
KL	B82E	Klein Letaba	0.18	WRSM20 00		0.18	0.2	0.2	na										
KL	B82F	Klein Letaba	0.62	WRSM20 00		0.62	0.6	0.6	na										
KL	B82G		1.60	Annual Op Analysis 05/6 - WARMS		1.60	1.6	1.6	na										
KL	B82H	Nsami	11.6 0	Annual Op Analysis 05/6 - WARMS		11.60	11.6	11.6	na	Demand including urban and losses is 20Mm ³ /a (assume uniform distrib as per gauge B8H054) ie 0.63m ³ /s									
KL	B82J			Annual Op Analysis 05/6 - WARMS		0.00	0.0	0.0											
	Totals	Quarticat	10			44	0 5	0.5			10							10.0	
GLA		Supplied	19			11	8.5	8.5			13							10.0	

Technical Study Module : Review of Water Requirements : Volume 2

D-8

		nt						Local (M	lm³/a)				Groo	ot Letaba W	ater Users'	Associatio	n (Mm³/a)		
Code	Quinary	Description / Compone	Total	Source	Ratio of local to total irrigation demand	Calculated (= d x f)	First consolidation to reduce number of demands	Second consolidation	Filename in WRYM	Comment	Theoretical estimate	444	200-01415	Gross allocation (from schedule)	Field edge allocation (77% of gross allocation)	Correction		Final GL (field edge)	Filename in WRYM
а	b	С	d	е	f	g	h	i	j	k	Ι	т	п	0	p	q	r	S	t
		from upstream of Tzaneen																	
GLB		Tzaneen to Nwanedsi	70			9	9.5	9.5			55							40.0	
GLC		Namitwato EWR 3	22			4	3.9	3.9			18							11.6	
GLD		Below EWR 3	33			1	0.7	0.8			33							28.9	
PRS		Politsi, Ramadiep a and Selokwe	14			14	17.3	17.3			0							0.0	
LET		Letsitele	21			16	16.5	16.5			4							0.0	
NW		Nwanedsi	18			14	13.8	13.8			4							0.0	
MOL		Molototsi	3			3	3.0	2.9			0							0.0	
Sub-total	for Groot Let	apa Middle						/3.1^										90.5	
ML		Letaba	37			37	37.4	37.4			0							0.0	
KL		Klein Letaba	14			14	14.0	14.0			0							0.0	
		Grand total	252			124.5	124.5	124.5			128			117.7				90.5	

* Estimated field edge irrigation requirement (excluding losses) for the Groot Letaba Catchment is (73.1 + 90.5 =) 163.6 Mm³/a

* Estimated field edge irrigation requirement (excluding losses) for the Groot, Middle and Klein Letaba is (124.5 + 90.5 =) 215 Mm³/a

Appendix E : EWR Requirements used for different Scenarios in the WRYM

						App	endix El						
File Units Descrir	: 1C- : [Mm	T.NSI 3/a] Require	ments fo	r 1925 +	0 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1925 1926 1927 1928 1929 1930 1931 1932	0.28 0.46 0.58 0.55 0.56 0.55 0.57 0.51	0.44 0.72 1.47 1.32 1.46 0.76 1.52 0.55	0.54 0.94 1.68 1.62 3.01 3.02 2.51 2.71	0.41 0.76 1.54 1.47 1.54 1.40 1.02 1.59	1.87 2.23 5.01 7.82 6.32 3.89 3.71 5.36	0.75 0.80 1.19 2.13 2.09 1.64 1.67 1.26	1.12 1.27 2.47 3.23 3.23 3.10 2.97 1.98	0.41 0.49 0.82 0.92 0.92 0.90 0.87 0.70	0.36 0.42 0.75 0.82 0.83 0.80 0.80 0.58	0.35 0.38 0.68 0.73 0.75 0.75 0.75 0.75 0.44	0.44 0.38 0.66 0.71 0.72 0.72 0.72 0.71 0.37	0.56 0.34 0.60 0.62 0.63 0.63 0.61 0.30	7.5 9.2 17.5 21.9 22.1 18.1 17.7 16.4
1933 1934 1935 1936 1937 1938 1939 1940 1941	0.27 0.57 0.34 0.58 0.49 0.58 0.58 0.58 0.58 0.58	1.54 1.54 0.44 1.54 0.55 1.53 1.54 1.45 0.42	2.84 3.02 0.51 3.01 2.76 3.02 3.02 2.90 0.62	1.57 1.43 0.55 1.58 1.42 1.72 1.35 1.16 0.58	7.87 3.55 4.24 9.01 4.06 9.01 4.46 2.21 1.56	2.04 1.21 1.85 2.30 1.00 2.30 1.80 0.72 1.51	3.20 1.64 3.06 3.18 3.13 3.23 3.07 1.39 2.96	0.92 0.64 0.88 0.91 0.92 0.92 0.89 0.52 0.80	0.83 0.66 0.81 0.77 0.82 0.82 0.82 0.81 0.46 0.75	0.75 0.63 0.75 0.60 0.75 0.75 0.75 0.38 0.72	0.72 0.59 0.72 0.51 0.72 0.72 0.72 0.72 0.33 0.71	0.63 0.41 0.63 0.53 0.63 0.63 0.63 0.63 0.29 0.63	23.2 15.9 14.8 24.5 17.3 25.2 19.6 12.4 11.5
1942 1943 1944 1945 1946 1947 1948 1949 1950	0.58 0.58 0.57 0.44 0.32 0.28 0.56 0.49 0.57	1.51 1.53 1.15 0.74 0.45 0.94 1.35 1.17 1.09	3.02 2.22 0.73 0.79 0.51 2.43 1.39 2.21 3.02	1.37 1.02 0.53 1.56 0.36 0.94 1.12 1.17 1.43	2.63 7.86 3.24 6.18 1.54 2.82 2.85 7.29 3.07	1.69 1.84 1.88 1.68 0.63 2.30 1.02 1.90 0.91	3.19 2.92 3.10 2.89 0.94 3.23 1.75 3.05 2.75	0.92 0.83 0.89 0.82 0.40 0.92 0.65 0.89 0.91	0.83 0.74 0.78 0.74 0.35 0.83 0.67 0.82 0.83	0.75 0.69 0.68 0.65 0.33 0.74 0.68 0.75 0.75	0.72 0.66 0.60 0.59 0.30 0.68 0.66 0.72 0.72	0.63 0.55 0.39 0.26 0.56 0.56 0.63 0.63	17.8 21.4 14.6 17.4 6.4 16.7 13.3 21.1 16.7
1951 1952 1953 1954 1955 1956 1957 1958 1959 1960	0.58 0.33 0.56 0.58 0.58 0.58 0.58 0.54 0.34 0.55	1.48 1.05 1.50 1.51 1.34 1.52 1.24 1.54	1.49 2.33 2.96 2.84 2.98 1.68 2.55 3.01 3.01	0.57 1.55 1.60 1.72 1.27 0.65 1.72 1.40 1.30 1.54	8.22 7.24 9.01 9.33 1.99 8.95 5.30 5.25 7.83	0.70 2.07 1.68 2.30 2.30 1.53 1.88 1.55 1.55 2.06	1.04 3.14 3.01 3.21 3.21 2.96 2.91 2.23 2.60 3.18	0.42 0.91 0.90 0.91 0.84 0.81 0.62 0.84 0.82	0.37 0.82 0.81 0.82 0.80 0.78 0.62 0.49 0.79 0.82	0.38 0.74 0.75 0.75 0.73 0.74 0.47 0.42 0.73 0.75	0.41 0.72 0.71 0.72 0.69 0.72 0.39 0.39 0.39 0.70	0.38 0.62 0.63 0.63 0.63 0.41 0.35 0.62 0.63	9.7 22.5 22.3 25.0 24.9 14.4 22.8 17.6 19.3 23.5
1961 1962 1963 1964 1965 1966 1967 1968	0.58 0.28 0.52 0.28 0.41 0.35 0.50 0.34	1.91 1.41 0.78 0.94 0.72 1.18 0.94 1.47 1.31	1.78 2.90 0.92 3.02 1.03 2.08 2.04 2.55	1.02 1.21 0.67 1.67 1.05 1.27 0.57 1.20	2.23 2.35 2.08 5.38 5.48 6.74 1.57 3.22	0.74 0.68 0.67 1.33 1.67 1.84 0.59 1.89	1.28 1.04 0.94 2.16 2.28 3.22 0.94 3.09	0.52 0.47 0.39 0.73 0.51 0.92 0.42 0.89	0.52 0.62 0.34 0.66 0.38 0.83 0.45 0.80	0.45 0.71 0.31 0.60 0.35 0.75 0.47 0.73	0.72 0.38 0.70 0.26 0.51 0.32 0.71 0.49 0.70	0.30 0.62 0.22 0.43 0.28 0.60 0.39 0.61	11.3 12.4 8.2 17.5 14.9 20.2 9.9 17.3
1969 1970 1971 1972 1973 1974 1975 1976 1977	0.58 0.27 0.57 0.57 0.58 0.58 0.54 0.57 0.58	1.53 0.45 1.53 1.45 1.54 1.53 0.59 1.53 1.44	2.78 1.20 2.81 1.98 3.02 2.81 3.02 2.47 3.00	1.00 1.39 1.72 0.65 1.72 1.52 1.66 1.63 1.72	1.89 4.48 9.33 1.76 9.01 8.91 8.64 8.14 9.01	0.66 1.20 2.30 0.69 2.30 2.20 2.30 2.22 2.18	0.92 1.68 3.23 1.75 3.21 3.11 3.23 3.23 3.23 3.22	0.38 0.72 0.92 0.82 0.91 0.90 0.92 0.92 0.91	0.34 0.72 0.83 0.69 0.82 0.81 0.83 0.83 0.82 0.80	0.32 0.65 0.75 0.61 0.74 0.75 0.75 0.75 0.74 0.70	0.30 0.59 0.71 0.62 0.72 0.71 0.72 0.70 0.66	0.27 0.41 0.62 0.63 0.63 0.62 0.63 0.63 0.63 0.55	11.0 13.8 25.3 12.2 25.2 24.5 23.8 23.6 24.8
1978 1979 1980 1981 1982 1983 1984 1985 1986	0.46 0.58 0.58 0.35 0.30 0.58 0.58 0.58 0.58	1.49 1.52 1.54 1.52 0.74 0.90 1.54 1.42 1.39	2.27 2.81 3.00 2.43 0.84 1.24 2.98 1.62 2.22	1.18 1.37 1.72 0.87 0.48 0.54 1.34 0.77 0.79	3.23 8.62 9.01 1.89 1.15 1.44 7.22 2.24 5.54	1.39 2.04 2.28 0.66 0.52 0.64 1.71 0.83 1.70	2.66 2.97 3.20 1.03 0.81 1.15 2.72 3.14 2.66	0.74 0.85 0.91 0.47 0.36 0.48 0.81 0.92 0.71	0.65 0.73 0.81 0.49 0.32 0.43 0.77 0.82 0.58	0.59 0.59 0.73 0.44 0.29 0.72 0.73 0.75 0.53	0.68 0.59 0.69 0.27 0.72 0.72 0.70 0.71 0.51	0.63 0.59 0.62 0.33 0.26 0.63 0.62 0.61 0.61	15.9 23.3 25.1 11.1 6.4 9.2 21.7 14.4 17.8
1987 1988 1989 1990 1991 1992 1993 1994 1995 1996	0.58 0.58 0.49 0.52 0.57 0.17 0.44 0.47 0.55 0.58	1.48 1.54 1.52 1.24 0.78 0.27 1.45 0.78 1.54 1.53	2.99 2.78 2.97 2.80 0.62 1.22 2.98 1.62 3.01 2.76	1.26 0.94 1.53 1.40 0.36 0.55 1.21 0.68 1.72 1.64	7.57 4.07 5.38 5.05 0.88 1.76 3.24 3.37 9.33 7.89	2.13 1.52 1.54 2.06 0.36 1.24 1.22 1.48 2.30 2.13	3.22 2.33 2.79 3.16 0.52 2.67 1.64 2.81 3.16 3.23	0.92 0.72 0.87 0.91 0.27 0.66 0.52 0.86 0.92 0.92	0.83 0.64 0.79 0.82 0.24 0.47 0.41 0.79 0.83 0.82	0.75 0.64 0.72 0.75 0.21 0.44 0.36 0.72 0.75 0.75	0.72 0.64 0.69 0.72 0.19 0.49 0.34 0.70 0.72 0.72	0.63 0.54 0.60 0.63 0.17 0.49 0.32 0.61 0.63	23.1 16.9 19.9 20.1 5.2 10.4 14.1 14.9 25.4 23.6
1997 1998 1999 2000 2001 2002 2003 2004	0.58 0.58 0.58 0.58 0.58 0.58 0.54 0.30 0.58	1.53 1.53 1.53 1.53 1.52 1.54 0.94 0.52 1.34	2.75 3.02 2.88 2.63 3.02 0.77 0.65 2.98	1.59 1.72 1.69 0.83 1.34 0.47 0.46 1.26	5.87 8.35 8.23 7.43 3.33 1.19 5.01 2.92	1.32 2.22 2.03 1.89 0.97 0.50 2.07 0.79	2.03 3.23 3.12 2.98 1.40 0.69 3.22 1.43	0.92 0.92 0.91 0.87 0.49 0.34 0.92 0.69	0.82 0.49 0.83 0.82 0.79 0.44 0.30 0.83 0.68	0.75 0.75 0.75 0.73 0.45 0.28 0.75 0.62	0.72 0.64 0.72 0.72 0.71 0.51 0.26 0.72 0.62	0.63 0.63 0.63 0.62 0.47 0.25 0.63 0.53	23.0 18.5 24.5 23.9 21.6 14.6 6.5 16.1 14.4
AVE : SD :	0.50 0.11	1.22 0.39	2.26 0.85	1.19 0.43	5.08 2.72	1.53 0.59	2.47 0.86	0.76 0.19	0.68 0.18	0.63 0.16	0.60 0.15	0.53 0.13	17.5 5.6

						App	endix E2						
File	: 2D-	T.NSI											
Units	: [Mm	13/a]	monta fo	- 102E +	- 2004								
Descri	р. • ник	Require	ements IO	r 1925 l	2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1925	1.51	1.32	1.08	2.28	5.40	7.09	3.43	2.37	1.78	1.62	1.36	1.18	30.4
1926	1.15	0.57	0.55	0.93	1.31	1.12	0.61	0.54	0.35	0.25	0.20	0.18	7.8
1928	0.86	1.56	1.51	2.51	5.13	8.09	3.59	2.57	1.98	1.77	1.40	1.20	32.2
1929	1.45	1.80	3.14	3.56	3.91	7.95	3.63	2.65	2.06	1.86	1.48	1.27	34.8
1930	1.41	2.21	4.74	2.85	7.55	7.47	3.65	2.67	2.06	1.86	0.82	0.57	22.9
1932	0.50	0.38	1.27	5.16	8.37	5.06	2.93	1.95	1.42	1.12	0.74	0.57	29.5
1933	0.42	2.69	4.72	5.06	8.40	8.20	3.59	2.59	2.01	1.81	1.43	1.19	42.1
1935	0.66	0.38	0.41	1.68	6.12	7.80	3.49	2.56	2.03	1.83	1.47	1.27	29.7
1936	1.55	2.53	3.91	4.85	9.94	9.97	3.67	2.59	1.97	1.72	1.27	1.10	45.1
1937	1.14 1.60	0.55 2.69	1.96	4.25	4.09 9.94	3.04 9.97	3.68	2.67	2.06	1.86	1.49	1.29	28.1 47.4
1939	1.60	2.69	4.74	4.76	5.74	8.11	3.66	2.66	2.06	1.86	1.49	1.29	40.7
1940	1.60	2.50	4.72	4.39	3.78	3.13	3.31	2.54	1.96	1.68	1.23	1.03	31.9
1941	1.55	1.74	1.20	2.33	1.85	3.68	3.47	2.50	2.06	1.86	1.49	1.22	25.5
1943	1.60	2.08	1.65	2.87	9.68	9.24	3.59	2.51	1.96	1.81	1.44	1.17	39.6
1944	1.59	2.18	1.59	3.51 5.36	5.70 9.21	6.25 8.32	3.43	2.42	1.82	1.52	1.10	0.84	32.0
1946	0.94	0.69	0.67	0.62	4.23	4.54	2.71	2.17	1.67	1.48	1.09	0.86	21.7
1947	0.90	1.34	4.67	4.29	4.97	9.97	3.72	2.67	2.06	1.85	1.47	1.24	39.1
1948	1.04	1.90	1.50	2.74	3.86	5.54	2.80	2.63	2.06	1.85	1.24	1.07	29.1
1950	1.38	0.98	4.74	4.95	3.74	3.02	2.18	2.30	1.99	1.81	1.44	1.26	29.8
1951	1.59	1.94	1.38	1.15	1.62 9.94	1.40	0.77	0.81	0.53	0.48	0.39	0.31	12.4
1953	1.47	1.81	2.43	4.77	8.07	8.12	3.53	2.59	2.02	1.81	1.44	1.23	39.3
1954	1.35	1.96	3.14	5.36	9.94	9.97	3.72	2.67	2.06	1.86	1.49	1.29	44.8
1955	1.60	1.85	4.74	4.92 2.30	2.80	9.97 6.04	3.72	2.66	2.06	1.86	1.49	1.29	47.2 28.9
1957	1.60	2.29	1.68	5.36	9.30	5.87	3.22	2.33	1.72	1.46	1.05	1.08	36.9
1958	1.48	1.61	4.71	4.60	5.91 5.81	5.63	3.24	2.13	1.48	1.36	1.01	0.81	34.0
1960	1.23	2.69	4.74	5.12	8.35	9.49	3.72	2.67	2.06	1.86	1.49	1.29	44.7
1961	1.60	1.74	1.42	2.26	2.14	1.89	0.96	1.27	0.93	0.62	0.36	0.23	15.4
1962	0.17	1.34	2.43	2.74	2.13	1.52	0.80	0.88	0.95	0.30	0.16	0.80	9.6
1964	0.31	0.88	4.74	4.97	6.84	5.08	2.86	1.98	1.48	1.26	0.80	0.80	32.0
1965	0.94	0.88	0.78	3.22	5.41	4.68 8.18	2.30	1.53	1.05	0.68	0.44	0.38	22.3
1967	1.53	1.76	1.63	1.27	1.52	1.69	1.60	1.71	1.56	1.61	1.24	1.04	18.2
1968	1.06	1.38	3.27	4.42	4.53	8.41	3.67	2.63	2.04	1.82	1.45	1.24	35.9
1969	0.38	2.50	3.62	3.54 4.66	2.92	2.55	3.03	2.46	1.98	1.77	1.34	1.09	20.5
1971	1.51	2.07	2.54	5.36	10.30	9.97	3.72	2.67	2.06	1.86	1.49	1.27	44.8
1972	1.58	2.05	1.63	1.35	1.52	1.50	0.95	1.45	1.20	0.88	0.64	1.26	16.0
1974	1.60	2.47	3.73	4.78	8.70	8.71	3.65	2.64	2.06	1.85	1.48	1.25	42.9
1975	1.29	0.90	4.74	5.36	9.87	9.97	3.72	2.67	2.06	1.86	1.49	1.29	45.2
1976	1.58	2.00	2.78	4.89 5.36	9.35	9.34	3.72	2.65	2.06	1.85	1.48	1.29	40.4
1978	1.34	1.77	1.67	2.65	2.69	3.18	2.40	1.93	1.59	1.45	1.24	1.26	23.2
1979	1.57	2.06	3.43	4.53	9.78	9.44	3.60	2.53	1.92	1.67	1.28	1.25	43.1
1981	1.55	2.17	1.98	2.90	2.50	1.68	0.81	0.91	0.73	0.62	0.40	0.29	16.5
1982	0.31	0.57	0.82	0.80	1.03	1.09	0.67	0.58	0.36	0.23	0.16	0.14	6.8
1984	0.∠6 1.59	2.69	1.19 4.24	4.11	±.32 8.17	⊿.4⊥ 8.51	⊿.∪4 3.59	1.53 2.58	2.04	1.86	1.49	⊥.∠4 1.29	42.2
1985	1.60	2.04	1.67	2.24	2.12	2.10	3.38	2.58	2.00	1.76	1.36	1.15	24.0
1986	1.32	1.63	3.01	3.51	4.11	4.43	2.88	2.10	1.65	1.52	1.16	1.27	28.6
1988	1.60	2.69	2.19	2.44	4.48	3.96	2.02	1.50	1.22	1.05	0.80	0.63	24.6
1989	0.82	2.08	3.50	4.62	6.37	6.35	3.46	2.47	1.90	1.66	1.24	1.03	35.5
1990	1.05 0.96	1.11 0.75	⊿.36 0.67	4./6 0.47	7.61 0.72	8.59 0.65	3.66 0.40	∠.48 0.33	0.21	0.13	1.35 0.08	0.03	5.4
1992	0.08	0.15	1.61	1.34	1.18	3.08	2.13	1.27	0.65	0.54	0.42	0.35	12.8
1993	0.32	1.91	3.12	3.47	2.85	2.37	1.01	0.97	0.57	0.43	0.27	0.18	17.5
1995	0.78	2.69	4.73	5.25	10.30	9.97	3.67	2.66	2.06	1.86	1.49	1.29	46.8
1996	1.60	2.44	2.06	5.09	8.54	9.79	3.72	2.63	2.01	1.80	1.42	1.27	42.4
1998	1.46	∠.50 2.07	∠.∠4 4.74	5.36	0.49 9.37	.⊥⊿ 9.70	⊿.⊥4 3.72	1.51 2.66	2.06	1.86	1.49	1.29	45.8
1999	1.57	2.07	4.58	5.23	9.05	8.62	3.67	2.61	2.04	1.84	1.48	1.27	44.0
2000	⊥.56 1.26	1.77 2.69	2.56	2.53	9.06 3.98	8.71 3.12	3.17 1.58	2.16	⊥.76 0.71	1.58 0.71	1.19 0.51	0.98	37.0
2002	0.68	0.49	0.49	0.53	1.17	1.20	0.64	0.52	0.36	0.33	0.22	0.17	6.8
2003	0.25	0.37	0.47	0.69	9.19	9.81	3.72	2.66	2.06	1.86	1.49	1.28	33.9
2004	1.54	1.29	⊿.∪0	2.35	2.44	1.95	1.22	1.41	1.14	u.//	0.49	0.39	10.0
AVE : SD :	1.20 0.46	1.66 0.73	2.64 1.45	3.62 1.55	5.85 3.13	6.00 3.12	2.86 1.07	2.12 0.68	1.63 0.55	1.45 0.52	1.13 0.43	0.98 0.39	31.1 11.5

						App	endix E3						
File	: 300	-B NST											
Units	: [Mm	3/a]											
Descri	p. : EWR	Require	ements fo	r 1925 t	o 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1925	0 43	0.85	0.46	1 37	2 01	2 01	1 78	0.66	0 48	0 42	0.36	0 34	11 2
1925	0.39	0.41	0.28	1.09	0.77	0.58	0.43	0.17	0.13	0.11	0.09	0.12	4.6
1927	0.51	1.44	1.07	2.20	2.42	1.82	1.54	0.63	0.49	0.38	0.30	0.30	13.1
1928	0.30	1.1/	0.87	2.02	2.28	2.33	2.08	0.83	0.62	0.50	0.40	0.35	13.6
1930	0.47	0.78	1.80	2.20	2.15	2.12	2.06	0.85	0.65	0.51	0.41	0.36	14.4
1931	0.50	1.48	1.50	1.45	1.54	1.64	1.43	0.59	0.50	0.41	0.28	0.24	11.5
1932	0.18	1.50	1.80	2.20	2.33	2.30	2.04	0.84	0.43	0.29	0.19	0.18	15.0
1934	0.45	1.49	1.79	2.00	1.79	1.43	1.13	0.45	0.38	0.28	0.20	0.20	11.6
1935	0.14	0.20	0.18	0.77	2.34	2.30	2.02	0.81	0.64	0.51	0.41	0.36	10.7
1937	0.38	0.31	1.67	2.03	1.88	1.25	2.08	0.85	0.65	0.51	0.41	0.36	12.4
1938	0.51	1.50	1.80	2.22	2.42	2.37	2.09	0.85	0.65	0.51	0.41	0.36	15.7
1939	0.51	1.50	1.80	2.11	2.09	2.28	2.06	0.84	0.65	0.51	0.41	0.36	15.1
1941	0.27	0.31	1.13	1.05	0.56	2.24	2.02	0.73	0.59	0.48	0.39	0.36	10.1
1942	0.51	1.45	1.74	1.66	0.82	1.97	2.09	0.85	0.65	0.51	0.41	0.36	13.0
1943	0.51	1.45	0.84	1.48	2.49	2.33	1.95	0.76	0.58	0.48	0.37	0.33	14.0
1945	0.33	0.77	0.52	2.21	2.40	2.28	1.95	0.80	0.60	0.47	0.35	0.30	13.0
1946	0.25	0.31	0.25	0.13	1.61	1.70	1.40	0.60	0.47	0.38	0.27	0.24	7.6
1948	0.22	1.34	0.94	2.13	2.22	2.37 1.81	2.09 1.55	0.63	0.65	0.51	0.39	0.33	12.8
1949	0.35	0.98	1.45	1.51	2.10	2.20	2.01	0.84	0.65	0.51	0.41	0.36	13.4
1950	0.47	0.78	1.80	2.15	1.48	1.20	1.42	0.79	0.64	0.51	0.41	0.36	12.0
1952	0.07	0.96	1.73	2.20	2.42	2.36	2.08	0.85	0.65	0.51	0.41	0.36	14.6
1953	0.47	1.36	1.64	2.17	2.35	2.20	1.92	0.81	0.63	0.50	0.39	0.34	14.8
1954	0.47	1.44	1.75	2.21	2.42	2.37	2.09	0.85	0.65	0.51	0.41	0.36	15.5
1956	0.51	1.27	1.17	1.20	1.61	2.19	1.98	0.81	0.63	0.51	0.41	0.36	12.7
1957	0.51	1.48	1.47	2.22	2.41	2.19	1.83	0.72	0.55	0.43	0.30	0.32	14.4
1958	0.48	1.26	1.78	1.83	2.33	2.18	1.76	0.63	0.45	0.35	0.26	0.25	13.9
1960	0.45	1.50	1.80	2.18	2.38	2.34	2.09	0.85	0.65	0.51	0.41	0.36	15.5
1961	0.51	1.27	0.92	1.04	0.84	0.79	0.75	0.38	0.35	0.18	0.12	0.12	7.3
1962	0.02	0.48	0.53	0.60	0.89	0.63	0.49	0.22	0.34	0.35	0.05	0.28	4.0
1964	0.05	0.65	1.80	2.20	2.28	1.99	1.57	0.61	0.46	0.34	0.23	0.25	12.4
1965	0.28	0.63	0.38	1.76	2.24	2.05	2 09	0.45	0.30	0.16	0.12	0.15	9.9
1967	0.47	1.35	1.26	0.47	0.48	0.60	0.72	0.44	0.44	0.42	0.32	0.30	7.3
1968	0.28	1.24	1.77	2.02	1.87	2.33	2.08	0.83	0.64	0.51	0.40	0.35	14.3
1969	0.51	1.49	1.12	2.10	2.14	1.60	1.67	0.20	0.16	0.13	0.11	0.12	8.6
1971	0.49	1.48	1.64	2.22	2.51	2.37	2.09	0.85	0.65	0.51	0.41	0.36	15.6
1972	0.50	1.36	0.95	0.49	0.50	0.63	0.84	0.49	0.40	0.28	0.22	0.36	7.0
1973	0.51	1.50	1.80	2.22	2.42	2.37	2.08	0.85	0.65	0.51	0.41	0.36	15.7
1975	0.44	0.59	1.80	2.22	2.50	2.37	2.09	0.85	0.65	0.51	0.41	0.36	14.8
1976	0.49	1.44	1.36	2.19	2.40	2.36	2.09	0.85	0.65	0.51	0.40	0.36	15.1
1978	0.44	1.31	1.37	1.56	1.39	1.51	1.49	0.63	0.03	0.42	0.39	0.34	11.4
1979	0.51	1.45	1.73	2.11	2.50	2.35	2.00	0.80	0.59	0.46	0.35	0.35	15.2
1980 1981	0.51	1.50 1.47	1.79	2.22	2.42	2.36	2.08	0.84	0.64 0.29	0.50 0.19	0.40	0.36	15.6
1982	0.08	0.31	0.40	0.21	0.28	0.31	0.31	0.12	0.08	0.05	0.05	0.04	2.2
1983	0.04	0.84	0.67	0.32	0.39	0.83	1.01	0.41	0.31	0.38	0.39	0.36	5.9
1984	0.51	1.50	1.35	2.03	2.38	2.30	2.05	0.80	0.64	0.51	0.41	0.36	15.2
1986	0.48	1.38	1.66	1.61	2.20	2.06	1.70	0.66	0.53	0.44	0.33	0.36	13.4
1987	0.51	1.39	1.80	2.11	2.49	2.37	2.09	0.85	0.64	0.51	0.41	0.36	15.5
1989	0.36	1.48	1.03	2.13	2.00	2.08	1.10	0.45	0.50	0.31	0.26	0.20	14.5
1990	0.42	1.12	1.68	2.18	2.31	2.34	2.09	0.82	0.61	0.50	0.40	0.34	14.8
1991 1992	0.42	0.69 0 13	0.30 1 52	0.09 0.73	0.22	0.21 1 81	0.19 1 49	0.07	0.05	0.04	0.03	0.00	2.3
1993	0.21	1.44	1.78	1.83	1.67	1.37	0.92	0.28	0.17	0.13	0.10	0.12	10.0
1994	0.26	0.58	0.81	0.69	1.71	1.89	1.72	0.70	0.57	0.46	0.35	0.32	10.1
1995	0.40 0.51	1.50 1.49	1.80 1.58	2.22	2.51	2.37	2.05	U.85 0.84	0.65 0.63	U.51 0.49	U.41 0.39	0.36 0.36	⊥5.6 15 3
1997	0.51	1.49	1.58	2.20	2.33	1.66	1.09	0.35	0.19	0.18	0.22	0.29	12.1
1998	0.50	1.47	1.80	2.22	2.41	2.36	2.09	0.85	0.65	0.51	0.41	0.36	15.6
2000	0.51	1.49 1.45	1.67	2.21 1.30	∠.5⊥ 2.40	2.37	∠.09 1.88	0.84 0.74	0.64 0.59	0.51 0.47	0.41 0.38	0.36	15.7 14.1
2001	0.48	1.50	1.80	2.04	1.76	1.27	0.91	0.28	0.22	0.21	0.19	0.22	10.9
2002	0.35	0.57	0.32	0.13	0.31	0.35	0.27	0.10	0.07	0.07	0.06	0.07	2.7
2003	0.50	1.12	1.70	1.84	1.21	0.77	0.71	0.34	0.30	0.18	0.41	0.19	9.0
	0.00	1	1 00	1	1 00	1 00	1	0.55	0.51	0.10	0.00	0.00	10.1
AVE : SD :	0.39	⊥.⊥4 0.44	1.39 0.50	1.67 0.65	1.86 0.70	1.82	1.62 0.58	0.66 0.24	0.51	0.40 0.14	0.32	0.29	12.1 3.5

						App	endix E4						
File	: 3CD	-T.NSI											
Units Descri	: [Mm p. : EWR	3/a] Require	ments for	r 1925 t	to 2004								
Voar	Oat	Nou	Dec	Tan	Feb	Mar	Apr	Mau	Jun		λυσ	Son	Total
1925 1926	0.37	0.73	0.40	1.88 1.67	7.42 0.96	7.20 0.80	1.57	0.56	0.41 0.11	0.36	0.31 0.08	0.29	21.5 5.3
1927	0.44	1.56	2.51	6.08	18.29	5.57	1.35	0.53	0.41	0.33	0.26	0.25	37.6
1928	0.26	1.08	4.59	4.08	9.46	28.51	1.83	0.71	0.55	0.42	0.34	0.30	47.3
1930	0.40	0.67	4.63	5.89	8.97	9.02	1.80	0.73	0.55	0.44	0.35	0.31	33.8
1931	0.43	1.60	3.20	1.94	3.48	4.52	1.26	0.50	0.43	0.35	0.24	0.20	18.1
1933	0.06	1.63	4.62	5.98	21.28	20.75	1.78	0.72	0.54	0.43	0.34	0.29	58.4
1934	0.39	1.62	4.61	3.98	5.32	3.60	1.00	0.39	0.33	0.24	0.17	0.17	21.8
1936	0.43	1.62	4.57	5.56	27.34	41.41	1.79	0.70	0.51	0.39	0.29	0.27	84.9
1937	0.32	0.27	4.10	4.13	6.10	2.81	1.82	0.73	0.55	0.44	0.35	0.31	21.9
1938	0.44	1.63	4.63	4.66	27.34	18.47	1.84	0.72	0.55	0.44	0.35	0.31	41.7
1940	0.44	1.62	4.61	3.77	3.49	2.51	1.56	0.66	0.49	0.38	0.27	0.24	20.0
1941	0.23	0.26	2.65	1.59	0.56	14.76 6.51	1.75	0.63	0.50	0.41	0.34	0.31	24.0
1943	0.44	1.57	2.98	1.96	25.13	26.07	1.70	0.65	0.49	0.41	0.32	0.28	62.0
1944	0.44	1.55	1.81	2.56	7.58	10.76 17 71	1.70	0.64	0.47	0.36	0.26	0.21	28.3
1946	0.21	0.26	0.22	0.12	3.94	4.82	1.24	0.51	0.40	0.33	0.23	0.21	12.5
1947	0.19	0.97	4.52	3.54	5.79	41.41	1.84	0.73	0.55	0.43	0.34	0.29	60.6
1948	0.42	0.84	3.15	4.88	8.38	12.27	1.37	0.54	0.46	0.39	0.31	0.28	31.0
1950	0.40	0.67	4.63	5.09	3.31	2.59	1.25	0.67	0.55	0.43	0.35	0.31	20.3
1951	0.44	1.50	2.03	0.73	0.65 26.68	0.92	0.45	0.18	0.14	0.12	0.12	0.13	81.1
1953	0.40	1.37	3.98	5.29	18.53	12.26	1.67	0.70	0.54	0.43	0.34	0.30	45.8
1954	0.40	1.56	4.47	6.61 4 89	27.34 28.31	41.41 41 41	1.84	0.73	0.55	0.44	0.35	0.31	86.0
1956	0.43	1.21	2.73	1.75	3.94	11.18	1.72	0.69	0.54	0.44	0.35	0.31	25.3
1957	0.44	1.60	3.17	6.77	25.62	11.84	1.60	0.62	0.47	0.36	0.26	0.27	53.0
1959	0.21	1.61	4.58	3.26	11.31	8.15	1.57	0.66	0.53	0.43	0.34	0.21	32.9
1960	0.38	1.63	4.63	5.60	21.26	30.14	1.84	0.73	0.55	0.44	0.35	0.31	67.9
1961	0.44	1.16	4.41	2.78	1.13	0.87	0.65	0.33	0.30	0.10	0.10	0.10	12.2
1963	0.22	0.41	0.51	0.62	0.68	0.85	0.36	0.14	0.10	0.07	0.05	0.01	4.0
1964	0.04	0.55	4.63	5.93 2.98	13.96	6.76 7.83	1.38	0.52	0.39	0.29	0.19	0.21	34.9 26.0
1966	0.18	0.52	3.04	3.18	16.30	17.31	1.83	0.73	0.55	0.44	0.35	0.30	44.7
1967 1968	0.41	1.35	2.96 4.54	0.48	0.47	0.84	0.62	0.38	0.38	0.36	0.28	0.25	8.8 45.3
1969	0.44	1.62	4.34	2.33	1.81	1.61	0.48	0.17	0.13	0.11	0.09	0.10	13.2
1970	0.05	0.26	2.62	4.58	8.78	4.32	1.47	0.65	0.52	0.42	0.32	0.28	24.3
1972	0.43	1.37	2.21	0.49	0.49	0.88	0.73	0.41	0.34	0.24	0.18	0.31	8.1
1973	0.44	1.63	4.63	6.77	27.34	39.96	1.83	0.72	0.55	0.44	0.35	0.31	85.0
1974	0.44	0.51	4.54	5.25	25.00	41.41	1.84	0.71	0.55	0.44	0.35	0.30	84.1
1976	0.42	1.56	3.06	5.78	23.40	38.42	1.84	0.73	0.55	0.44	0.34	0.31	76.8
1977	0.43	1.28	4.48 3.06	6.// 2.16	25.29	33.56	1.83	0.72	0.54	0.43	0.33	0.29	17.1
1979	0.43	1.58	4.45	4.67	26.68	33.68	1.74	0.68	0.51	0.39	0.30	0.30	75.4
1980 1981	0.43 0.42	1.63 1.59	4.61 3.35	6.77 1.89	27.34	38.10 0.94	1.82	0.72 0.19	0.55	0.43 0.16	0.34 0.11	0.30 0.12	83.0 10.8
1982	0.07	0.27	0.34	0.20	0.26	0.38	0.26	0.10	0.06	0.05	0.04	0.03	2.1
1983	0.03	0.72	1.10	0.32	0.37	1.45	0.89	0.35	0.26	0.32	0.33	0.30	6.4 55 9
1985	0.44	1.55	3.04	1.22	1.48	1.89	1.78	0.73	0.54	0.43	0.33	0.29	13.7
1986	0.41	1.41	4.10	2.39	9.54	8.12	1.50	0.56	0.45	0.38	0.28	0.30	29.4
1987	0.44	1.43	3.91	1.72	7.26	5.67	1.02	0.38	0.32	0.44	0.35	0.22	23.1
1989	0.31	1.61	4.53	4.87	12.32	8.36	1.64	0.66	0.51	0.40	0.31	0.28	35.8
1991	0.36	0.59	4.1/ 0.26	0.08	0.20	0.24	0.17	0.06	0.52	0.43	0.34	0.29	2.1
1992	0.00	0.11	3.30	0.90	2.44	5.48	1.31	0.38	0.26	0.18	0.16	0.19	14.7
1993	0.18	1.57	4.55 1.70	3.27 0.81	4.20 4.51	3.3⊥ 6.00	∪.81 1.51	∪.∠4 0.60	0.15	0.11	0.08	0.10 0.28	18.6 17.3
1995	0.34	1.63	4.62	6.77	28.31	41.41	1.79	0.72	0.55	0.44	0.35	0.31	87.2
1996 1997	0.44 0.44	1.62	3.62 3.61	5.98 6.06	20.96 17.14	37.86 4.58	1.84 0.96	0.72	0.54 0.16	0.42	0.34 0.19	0.31	74.6 35.5
1998	0.43	1.59	4.63	6.77	24.79	36.96	1.84	0.73	0.55	0.44	0.35	0.31	79.4
1999	0.44	1.62	4.57 4.12	6.56 1 83	28.31 23.26	41.41 24 57	1.84	0.72	0.55	0.44	0.35	0.31	87.1 59.6
2001	0.41	1.63	4.63	4.22	5.01	2.87	0.80	0.24	0.19	0.18	0.16	0.19	20.5
2002	0.30	0.49	0.28	0.12	0.30	0.44	0.23	0.08	0.06	0.06	0.05	0.06	2.5
2003	0.43	1.03	4.30	3.30	2.09	1.28	0.62	0.29	0.25	0.44	0.35	0.31	14.0
AVF :	0 33	1 16	3 33	3 7 2	12 66	16 41	1 4 2	0 56	0 43	0 35	0 27	0.25	40.9
SD :	0.13	0.51	1.48	2.18	10.02	15.10	0.51	0.20	0.15	0.12	0.10	0.08	27.4

						App	endix E5						
File	: 4CD	-B.NSI											
Units Descri	: [Mm D : FWP	13/a] Require	ments fo	r 1925 +	0 2004								
Descri	p Ewi	. Kequire	ments 10	1 1925 0	0 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1925	0.94	0.87	0.47	1.49	2.03	1.99	1.75	1.58	1.15	1.15	0.84	0.47	14.7
1926	1.15	1.41	1.08	2.16	2.37	1.78	1.49	1.49	1.12	0.26	0.22	0.18	15.9
1928	0.64	1.14	0.83	1.78	2.24	2.29	2.04	1.99	1.69	1.55	1.04	0.51	17.7
1929	1.08	0.77	1.76	2.16	2.17	2.27	2.04	2.02	1.76	1.62	1.08	1.12	19.7
1931	1.11	1.45	1.48	1.33	1.41	1.59	1.38	1.41	1.22	1.03	0.59	0.28	14.3
1932	0.45	0.36	1.02	2.16	2.29	2.25	2.00	2.00	1.73	1.59	1.05	0.23	13.2
1934	0.98	1.46	1.76	1.97	1.68	1.39	1.08	1.07	0.80	0.61	0.35	0.24	13.4
1935	0.37	0.24	0.18	0.83	2.31	2.25	2.01	1.96	1.74	1.61	1.08	0.61	15.2 19.4
1937	0.78	0.39	1.63	1.99	1.78	1.22	2.04	2.02	1.76	1.62	1.08	0.81	17.1
1938	1.32	1.47	1.77	2.18	2.38	2.33	2.06	2.01	1.76	1.62	1.37	1.13	21.4
1940	1.26	1.46	1.76	1.94	1.40	1.17	1.72	1.83	1.55	1.26	0.69	0.34	16.4
1941 1942	0.60	0.39	1.40	1.19	0.57	2.23	1.99	1.78	1.62	1.52	1.03	0.53	14.8 18 5
1943	1.32	1.42	1.24	1.32	2.44	2.29	1.91	1.77	1.57	1.44	0.87	0.44	18.0
1944	1.14	1.39	0.80	1.59	1.97	2.13	1.90	1.74	1.47	1.07	0.63	0.29	16.1
1946	0.59	0.39	0.26	0.26	1.46	1.65	1.35	1.42	1.03	0.86	0.55	0.28	10.1
1947	0.52	1.08	1.72	1.89	1.81	2.33	2.06	2.02	1.76	1.59	1.01	0.47	18.3
1948	0.70	1.33	1.44	1.42	2.18	2.16	1.52	1.99	1.45	1.37	1.08	0.44	10.6
1950	0.99	0.71	1.77	2.10	1.33	1.18	1.37	1.88	1.73	1.59	1.07	0.52	16.2
1951 1952	1.14	1.38	0.86	0.73 2.16	0.66 2.38	0.66	0.58	0.56	0.34	0.31	0.28	0.20	7.7
1953	1.00	1.35	1.59	2.13	2.30	2.15	1.86	1.95	1.69	1.55	0.99	0.50	19.1
1954	0.99	1.41	1.72	2.17	2.38	2.33	2.06	2.02	1.76	1.62	1.21	0.64	20.3
1956	1.14	1.23	1.22	1.21	1.64	2.15	1.94	1.96	1.72	1.62	1.26	1.13	18.2
1957	1.32	1.45	1.45	2.18	2.37	2.16	1.79	1.70	1.51	1.17	0.65	0.44	18.2
1959	0.57	1.45	1.75	1.78	2.20	2.06	1.76	1.88	1.68	1.58	1.04	0.49	18.3
1960	0.95	1.47	1.77	2.14	2.34	2.30	2.05	2.02	1.76	1.62	1.37	1.13	20.9
1962	0.21	1.24	1.70	1.67	0.80	0.61	0.51	0.57	0.69	0.42	0.24	0.18	9.4
1963	0.59	0.48	0.52	0.59	0.65	0.59	0.42	0.39	0.26	0.23	0.18	0.16	5.1
1964	0.25	0.64	0.36	2.16	2.23	2.02	1.53	1.4/	0.59	0.76	0.41	0.30	14.5
1966	0.53	0.56	1.30	1.80	2.28	2.24	2.05	2.02	1.76	1.62	1.10	0.52	17.8
1967	1.03	1.34	1.24	2.00	0.47	0.59	2.05	1.07	0.98	1.10	1.05	0.36	10.1 18.6
1969	1.32	1.46	1.67	1.52	0.95	0.85	0.59	0.50	0.32	0.29	0.23	0.18	9.9
1970	0.26	0.37	1.17	2.04	2.09	1.55	1.60	1.80	1.66	1.52	0.90	0.45	15.4 20.2
1972	1.11	1.34	0.91	0.50	0.48	0.61	0.84	1.16	0.85	0.63	0.40	0.84	9.7
1973	1.32	1.47	1.77	2.18	2.38	2.33	2.04	2.01	1.76	1.62	1.16	1.12	21.2
1975	0.93	0.56	1.77	2.13	2.45	2.33	2.06	2.02	1.76	1.62	1.37	0.86	19.9
1976	1.09	1.40	1.32	2.15	2.35	2.32	2.06	2.02	1.76	1.61	1.07	0.64	19.8
1978	0.95	1.36	1.37	1.50	1.30	1.49	1.46	1.50	1.30	1.09	0.99	0.48	19.0
1979	1.14	1.42	1.70	2.05	2.46	2.31	1.97	1.94	1.65	1.41	0.85	0.52	19.4
1980	1.14	1.47	1.70	1.26	2.38	2.32	2.04	2.00	0.56	0.40	0.26	0.18	20.2
1982	0.29	0.38	0.37	0.29	0.27	0.30	0.28	0.26	0.21	0.20	0.18	0.17	3.2
1983	1.32	0.87	1.72	2.04	2.34	2.26	1.00	1.01	1.75	1.62	1.14	0.52	20.3
1985	1.22	1.41	1.35	0.85	0.87	0.95	2.00	2.02	1.71	1.55	0.96	0.47	15.4
1986	1.03	1.35	1.62	1.53	2.14	2.02	1.66 2.06	1.57	1.38	1.27	0.75	0.52	16.8 21.2
1988	1.32	1.47	1.60	1.07	1.95	1.82	1.16	1.11	0.83	0.74	0.59	0.32	14.0
1989	0.89	1.47	1.76	2.09	2.22	2.07	1.86	1.92	1.66	1.49	0.94	0.47	18.8 19.4
1991	0.95	0.74	0.34	0.22	0.22	0.22	0.20	0.19	0.16	0.17	0.15	0.15	3.7
1992	0.15	0.16	1.52	0.81	1.21	1.77	1.47	1.13	0.68	0.51	0.39	0.28	10.1
1994	0.65	0.62	0.80	0.89	1.69	1.90	1.74	1.73	1.62	1.46	0.91	0.47	14.5
1995	0.92	1.47	1.77	2.18	2.46	2.33	2.03	2.02	1.76	1.62	1.37	1.13	21.1
1996 1997	1.12 1.18	⊥.46 1.47	1.62	⊿.⊥6 2.16	∠.34 2.28	∠.32 1.63	⊿.06 1.06	∠.∪⊥ 0.88	1.75 0.37	1.60 0.39	1.U7 0.42	0.71	∠∪.4 13.8
1998	1.10	1.45	1.77	2.18	2.37	2.32	2.06	2.02	1.76	1.62	1.37	1.13	21.1
2000	1.20 1.15	⊥.46 1.44	1.75 1.65	2.17	2.46	2.33	2.06 1.86	2.02	⊥.76 1.64	⊥.62 1.52	1.31 1.00	1.13 0.49	21.3 18.5
2001	1.10	1.47	1.77	2.09	2.00	1.47	1.07	0.94	0.69	0.64	0.46	0.32	14.0
2002	0.82	0.62	0.38	0.31	0.37	0.43	0.32	0.26	0.22	0.24	0.20	0.18	4.4
2003	1.12	1.16	1.67	1.82	1.18	0.81	0.78	0.88	0.63	0.43	0.31	0.24	11.0
AVE : SD :	0.91 0.33	1.13 0.41	1.37 0.49	1.65 0.61	1.82 0.69	1.79 0.64	1.60 0.56	1.58 0.55	1.33 0.53	1.20 0.51	0.84 0.37	0.53	15.8 4.7

						App	endix E6						
File	: 4CE	-T.NSI											
Units	: [Mm	13/a]		1005	0004								
Descri	.p. : EWR	Require	ements io	or 1925 1	to 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1925	0.82	0 76	0 42	2 40	8 96	9.88	6 21	1 98	1 09	1 00	0 73	0 41	34 7
1926	0.68	0.39	0.23	1.76	0.79	0.89	0.39	0.38	0.25	0.23	0.19	0.16	6.3
1927	1.00	1.70	2.65	10.82	35.13	6.81	4.05	1.80	1.04	0.74	0.54	0.31	66.6
1928	0.55	1.15	7.90	4.30	18.91	28.82	7.91	2.86	2.14	1.48	0.90	0.44	72.4
1930	0.90	0.67	7.91	10.76	11.56	12.56	7.76	2.92	2.35	1.62	1.22	0.97	61.2
1931	0.97	2.28	3.61	2.30	3.24	5.32	3.54	1.65	1.20	0.90	0.51	0.24	25.8
1932	0.40	0.32 6.91	2.47	10.83	51.30 66.07	23.56	7.58	2.92	2.28	1.57	0.31	0.20	131.1
1934	0.85	2.93	7.91	7.36	4.70	3.96	2.34	0.98	0.70	0.53	0.31	0.21	32.8
1935	0.32	0.26	0.15	1.41	18.63	23.37	7.40	2.78	2.30	1.62	0.94	0.53	59.7
1937	0.68	0.34	4.37	7.53	5.63	2.88	7.91	2.92	2.35	1.62	0.94	0.71	37.9
1938	1.26	5.59	7.91	11.08	79.74	32.46	7.92	2.92	2.35	1.62	1.22	0.98	155.0
1939	1.26	6.91 3 27	7.91	8.13 6.84	7.70	21.91	7.70	2.92	2.35	1.62	1.22	0.98	70.6
1941	0.52	0.34	3.45	2.21	0.58	20.71	7.47	2.37	1.95	1.42	0.90	0.46	42.4
1942	0.99	1.79	4.96	2.94	0.97	8.06	7.92	2.92	2.35	1.62	1.22	0.98	36.7
1943	1.26	1.73	3.10	2.29	7.39	28.69	6.94 6.90	2.36	1.83	1.32	0.76	0.38	41.9
1945	0.58	0.63	0.47	11.05	71.53	21.30	6.94	2.64	2.02	1.30	0.69	0.33	119.5
1946	0.51	0.34	0.22	0.26	3.57	5.75	3.41	1.66	0.90	0.74	0.48	0.25	18.1
1947	0.45 0.96	1.40	ь.54 2.26	6.02 9.01	5.53 14.36	3∠.46 6.77	7.92 4.29	2.92	∠.35 1.59	1.23	0.88	0.41 0.39	68.⊥ 44.8
1949	0.61	0.90	3.54	2.36	9.58	16.20	7.26	2.89	2.35	1.62	0.94	0.45	48.7
1950	0.86	0.61	7.91	9.23	2.96	2.59	3.48	2.52	2.27	1.58	0.93	0.46	35.4
1951	0.99	0.85	5.67	10.84	78.37	32.43	7.91	2.92	2.35	1.62	0.24	0.18	9.4
1953	0.87	1.41	4.14	9.90	39.11	16.12	6.72	2.75	2.16	1.48	0.86	0.43	85.9
1954	0.86	1.70	6.18	11.00	79.74	32.46	7.92	2.92	2.35	1.62	1.06	0.56	148.4
1955	0.99	1.36	3.04	2.22	4.38	15.85	7.92	2.92	2.35	1.62	1.11	0.02	43.7
1957	1.26	2.32	3.55	11.08	76.84	16.46	6.38	2.24	1.70	1.02	0.56	0.38	123.8
1958	0.90	1.32	7.88	8.43 4 37	29.12	15.05	6.13 6.24	1.85	0.88	0.71	0.48	0.26	73.0
1960	0.83	6.91	7.91	10.39	66.60	30.16	7.92	2.92	2.35	1.62	1.22	0.98	139.8
1961	0.99	1.37	2.50	1.93	1.16	1.50	1.34	0.92	0.65	0.37	0.21	0.16	13.1
1962	0.19	1.37	5.02	3.60	1.17	0.99	0.46	0.50	0.60	0.71	0.59	0.30	15.5
1964	0.22	0.56	7.91	10.66	18.52	8.51	4.40	1.75	0.89	0.66	0.36	0.26	54.7
1965	0.53	0.49	0.32	4.25	16.40	10.67	3.29	1.02	0.51	0.28	0.21	0.16	38.2
1966	0.46	0.49	3.24	4.64	28.35	21.58	7.92	2.92	2.35	1.62	0.95	0.45	12 2
1968	0.54	1.37	7.87	7.63	5.88	28.71	7.92	2.88	2.32	1.58	0.92	0.43	68.0
1969	1.26	3.62	4.75	2.63	1.62	1.65	0.52	0.44	0.28	0.25	0.20	0.16	17.4
1970	0.23	0.33	2.90	8.07	10.79	5.08	5.01	2.39	2.06	1.43	0.78	0.39	39.5 149.6
1972	0.97	1.40	2.15	0.56	0.48	1.00	1.45	1.16	0.73	0.55	0.35	0.73	11.5
1973	1.26	5.78	7.91	11.08	79.74	32.44	7.91	2.92	2.35	1.62	1.02	0.98	155.0
1974	0.99	4.62	7.01	10.11	75.42 78.68	30.40 32.46	7.92	2.86	2.35	1.62	0.94	0.44	144.1
1976	0.95	1.65	3.29	10.51	71.07	32.43	7.92	2.92	2.35	1.62	0.93	0.55	136.2
1977	0.99	1.38	5.96	11.08	75.86	31.35	7.92	2.92	2.26	1.52	0.86	0.42	142.5
1978	0.82	1.46	4.97	2.48	2.83	4.65	7.30	2.71	2.02	1.28	0.73	0.45	141.7
1980	0.99	6.91	7.91	11.08	79.74	32.42	7.91	2.90	2.32	1.55	0.91	0.45	155.1
1981	0.95	1.98	3.74	2.26	1.19	1.06	0.47	0.52	0.49	0.35	0.22	0.16	13.4
1983	0.19	0.76	1.16	0.42	0.25	1.58	2.03	0.23	0.52	0.74	0.83	0.45	10.0
1984	1.26	6.91	6.06	8.06	66.51	23.97	7.04	2.72	2.35	1.62	0.99	0.70	128.2
1985	1.11	1.70 1.41	3.34 4 21	1.44 2.68	12 02	10 78	7.58	2.92	2.22	1.49 1.11	0.83	0.41 0.45	26.3 43.2
1987	1.03	1.68	7.91	8.62	77.15	32.46	7.92	2.92	2.35	1.62	1.22	0.98	145.9
1988	1.26	6.91	4.21	2.13	7.28	7.12	2.66	1.05	0.72	0.65	0.52	0.28	34.8
1990	0.77 0.84	6.91 1.24	7.90 4.73	8.97	17.01 22.18	12.56 29.44	6.74 7.92	2.63	2.06	1.39	U.82 0.94	U.41 0.44	68.2 84 6
1991	0.82	0.65	0.30	0.21	0.21	0.26	0.19	0.16	0.14	0.14	0.13	0.13	3.4
1992	0.13	0.19	3.84	1.32	2.43	6.71	3.87	1.09	0.59	0.44	0.34	0.24	21.2
1993	U.49 0.57	⊥.83 0.54	7.89 1,71	5.65 1.59	4.32 4.79	4.20 7.76	1.99 6.14	U.75 2.29	U.31 1.97	U.26 1.34	0.20 0.79	∪.⊥6 0.41	28.1 29.9
1995	0.80	6.91	7.91	11.08	82.58	32.46	7.89	2.92	2.35	1.62	1.22	0.98	158.7
1996	1.26	3.47	4.05	10.80	66.52	32.42	7.92	2.92	2.35	1.59	0.93	0.61	134.8
1997	1.05 0.96	5.39 2.01	4.26 7,91	11.08	28.28 74.93	5.58 32.41	∠.26 7.92	0.80	0.32 2.35	U.34 1.62	U.37 1.22	0.32	59.8 146.3
1999	1.08	3.46	7.90	11.02	82.58	32.46	7.92	2.92	2.35	1.62	1.16	0.98	155.5
2000	1.01	2.00	4.51	2.24	71.02	27.75	6.72	2.45	2.01	1.42	0.87	0.42	122.4
2001	0.96	6.91 0.54	7.91 0.34	8.91 0.31	8.20 0.37	4.50 0.63	∠.30 0.30	0.86	0.60	0.55	0.40	0.28	42.4
2003	0.26	0.33	1.91	0.53	59.58	32.43	7.92	2.92	2.35	1.62	1.08	0.74	111.7
2004	0.98	1.20	4.73	4.99	2.33	1.54	1.22	0.80	0.54	0.38	0.27	0.21	19.2
AVE :	0.80	2.22	4.64	6.23	30.73	16.07	5.45	2.11	1.62	1.14	0.73	0.46	72.2
SD :	0.31	2.09	2.69	4.05	32.44	12.46	2.77	0.93	0.81	0.52	0.33	0.25	52.3

						App	endix E7						
File	: 5C-	B.NSI											
Units Descri	: [Mm p. : EWR	13/a] ? Require	ments fo	r 1925 t	o 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1925	0.47	0.53	0.59	0.75	0.86	0.88	0.77	0.59	0.49	0.52	0.42	0.34	7.2
1926	0.32	0.38	0.11	0.85	0.68	0.29	0.43	0.19	0.14	0.20	0.12	0.12	3.8
1928	0.22	0.35	0.14	0.85	0.86	0.90	0.79	0.63	0.56	0.56	0.44	0.38	6.7
1929	0.41	0.53	0.83	0.84	0.83	0.88	0.80	0.72	0.62	0.60	0.47	0.39	7.9
1930	0.42	0.46	0.83	0.87	0.68	0.80	0.77	0.63	0.54	0.58	0.45	0.38	4 0
1932	0.18	0.34	0.52	0.88	0.86	0.75	0.70	0.41	0.30	0.35	0.19	0.17	5.7
1933	0.11	0.53	0.82	0.88	0.86	0.90	0.80	0.72	0.62	0.59	0.45	0.39	7.7
1934	0.44	0.53	0.06	0.18	0.43	0.86	0.58	0.27	0.21	0.26	0.15	0.13	4.5 5.1
1936	0.32	0.51	0.77	0.86	0.87	0.91	0.79	0.70	0.61	0.58	0.44	0.37	7.7
1937	0.37	0.42	0.82	0.87	0.73	0.63	0.80	0.70	0.54	0.51	0.35	0.37	7.1
1939	0.47	0.53	0.82	0.22	0.57	0.90	0.80	0.71	0.62	0.60	0.47	0.40	7.1
1940	0.45	0.53	0.83	0.32	0.36	0.46	0.59	0.30	0.20	0.23	0.13	0.11	4.5
1941	0.11	0.24	0.10	0.20	0.22	0.91	0.80	0.53	0.54	0.57	0.44	0.38	5.0
1943	0.43	0.51	0.22	0.50	0.89	0.85	0.73	0.49	0.41	0.45	0.32	0.25	6.1
1944	0.47	0.49	0.16	0.14	0.25	0.19	0.42	0.21	0.14	0.20	0.12	0.10	2.9
1946	0.24	0.20	0.09	0.00	0.84	0.70	0.28	0.16	0.12	0.19	0.11	0.10	3.2
1947	0.10	0.18	0.82	0.41	0.74	0.91	0.80	0.74	0.63	0.60	0.46	0.39	6.8
1948	0.47	0.51	0.33	0.88	0.83	0.77	0.74	0.53	0.45	0.48	0.34	0.28	6.6
1950	0.34	0.42	0.83	0.29	0.27	0.90	0.76	0.64	0.59	0.56	0.40	0.37	6.4
1951	0.46	0.48	0.18	0.78	0.60	0.31	0.50	0.20	0.16	0.24	0.13	0.11	4.1
1952	0.11	0.44	0.81	0.88	0.87	0.90	0.80	0.74	0.63	0.60	0.47	0.40	7.6
1954	0.32	0.47	0.81	0.87	0.87	0.90	0.80	0.72	0.62	0.60	0.47	0.39	7.8
1955	0.44	0.53	0.83	0.40	0.90	0.91	0.80	0.74	0.64	0.60	0.47	0.40	7.7
1957	0.45	0.48	0.49	0.88	0.85	0.87	0.78	0.09	0.61	0.59	0.40	0.39	7.9
1958	0.42	0.47	0.83	0.87	0.83	0.84	0.76	0.55	0.44	0.47	0.32	0.26	7.1
1959	0.26	0.52	0.80	0.12	0.85	0.81	0.74	0.56	0.52	0.52	0.36	0.29	6.4 7.8
1961	0.46	0.49	0.37	0.30	0.37	0.62	0.69	0.44	0.35	0.38	0.22	0.21	4.9
1962	0.24	0.53	0.82	0.15	0.25	0.23	0.56	0.31	0.32	0.44	0.31	0.24	4.4
1963	0.27	0.34	0.14	0.22	0.42	0.24	0.24	0.17	0.12	0.17	0.10	0.09	2.5
1965	0.11	0.20	0.11	0.76	0.84	0.75	0.60	0.26	0.17	0.21	0.12	0.12	4.3
1966	0.18	0.28	0.77	0.54	0.86	0.88	0.78	0.68	0.59	0.56	0.40	0.32	6.8
1968	0.32	0.53	0.81	0.85	0.29	0.22	0.40	0.28	0.28	0.50	0.23	0.19	7.4
1969	0.47	0.53	0.64	0.12	0.56	0.47	0.41	0.18	0.14	0.21	0.12	0.11	4.0
1970	0.18	0.34	0.82	0.88	0.75	0.69	0.77	0.60	0.53	0.50	0.34	0.28	6.7 8 1
1972	0.47	0.51	0.27	0.12	0.21	0.25	0.56	0.27	0.19	0.26	0.15	0.31	3.6
1973	0.47	0.51	0.83	0.88	0.87	0.91	0.80	0.74	0.64	0.60	0.47	0.41	8.1
1974	0.47	0.53	0.82	0.78	0.87	0.90	0.79	0.71	0.62	0.59	0.45	0.38	7.9 8.0
1976	0.46	0.53	0.68	0.88	0.87	0.91	0.80	0.74	0.64	0.60	0.47	0.41	8.0
1977	0.47	0.53	0.82	0.88	0.87	0.90	0.80	0.74	0.64	0.60	0.47	0.41	8.1
1978	0.45	0.50	0.75	0.41	0.90	0.85	0.78	0.69	0.40	0.47	0.33	0.33	7.8
1980	0.44	0.53	0.76	0.88	0.87	0.91	0.80	0.74	0.64	0.60	0.47	0.41	8.1
1981	U.47 0.20	0.53 0.24	U.78 0.09	U.16 0.11	U.48 0.15	0.62 0.31	U.63 0.23	0.38 0.14	0.32 0.11	0.37 0.16	0.22 0.10	0.19 0.10	5.1 1.9
1983	0.13	0.42	0.13	0.09	0.15	0.69	0.40	0.17	0.12	0.40	0.28	0.27	3.3
1984	0.46	0.53	0.42	0.54	0.76	0.83	0.73	0.52	0.51	0.52	0.36	0.41	6.6
1986	0.45	0.49	0.81	0.13	0.58	0.52	0.80	0.55	0.51	0.49	0.34	0.30	6.5
1987	0.00	0.02	0.83	0.88	0.90	0.91	0.17	0.00	0.00	0.00	0.00	0.00	3.7
1988	0.47	0.53	0.01 0.79	0.02	0.14	0.08	0.00	0.00 0.00	0.00	U.00 0.00	0.00	0.00	1.3
1990	0.00	0.10	0.09	0.88	0.87	0.80	0.73	0.00	0.00	0.00	0.00	0.00	3.5
1991	0.00	0.03	0.03	0.04	0.07	0.05	0.12	0.00	0.00	0.00	0.00	0.00	0.3
1992	0.00	0.02	0.82	0.09	0.86	0.91	0.02	0.00	0.00	0.00	0.00	0.00	3.4 1.3
1994	0.00	0.01	0.02	0.04	0.79	0.88	0.12	0.02	0.00	0.00	0.00	0.00	1.9
1995	0.00	0.10	0.05	0.88	0.90	0.91	0.00	0.00	0.00	0.00	0.00	0.00	2.8
1997	0.03	0.07	0.03	0.32	0.73	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.2
1998	0.04	0.03	0.80	0.88	0.86	0.87	0.77	0.00	0.00	0.00	0.00	0.00	4.2
2000	0.00	U.17 0.11	0.81 0.08	0.88 0.05	0.90 0.87	0.91 0.91	0.80	0.02	0.00	0.00	0.00	0.00	4.5
2001	0.00	0.53	0.83	0.86	0.07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.3
2002	0.00	0.00	0.01	0.03	0.05	0.05	0.13	0.00	0.00	0.00	0.00	0.00	0.3
2003	0.00	0.01	0.82	0.85	0.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.3
	0.20	0 20	0 54	0 54	0 65	0 67	0 50	0 41	0.25	0.26	0.26	0.22	
SD :	0.28	0.18	0.54	0.34	0.05	0.87	0.59	0.41	0.35	0.36	0.26	0.23	2.3

						App	endix E8						
File : 5C-T.NSI Units : [Mm3/a] Descrip : EWR Requirements for 1925 to 2004													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1925	0.65	2.22	1.29	1.49	4.91	2.20	1.42	0.93	0.77	0.78	0.61	0.51	17.8
1926 1927	0.55	0.94 2.09	0.31 0.62	1.85 2.62	1.86 2.52	0.84 1.29	0.88	0.42	0.35	0.46	0.26	0.27	9.0 13.5
1928	0.44	0.74	0.41	1.97	5.03	3.88	1.54	0.94	0.81	0.79	0.62	0.53	17.7
1929	0.59	2.31	2.18	1.68	3.53	2.41	1.72	1.00	0.86	0.81	0.65	0.56	18.3
1931	0.60	2.34	0.69	0.41	0.77	0.90	1.00	0.68	0.59	0.62	0.42	0.33	9.3
1932	0.39	0.68	1.16	3.14	4.93	1.61	1.25	0.72	0.60	0.61	0.42	0.33	15.8
1934	0.62	2.65	1.67	0.44	1.11	1.14	0.99	0.58	0.48	0.52	0.32	0.28	10.8
1935	0.29	0.42	0.17	1.03	4.01	2.10	1.24	0.72	0.65	0.68	0.47	0.43	12.2
1936	0.54	1.96	2.06	2.20	2.11	5.29	1.58	0.99	0.85	0.80	0.62	0.53	24.1 15.4
1938	0.59	1.32	2.18	2.83	6.75	6.11	2.26	1.01	0.87	0.82	0.65	0.56	25.9
1939	0.65	2.65	2.04	0.56	1.56	3.76	1.77	1.00	0.86	0.82	0.65	0.56	16.9
1941	0.28	0.54	0.28	0.50	0.58	9.51	2.39	0.85	0.81	0.79	0.62	0.54	17.7
1942	0.61	2.16	0.99	0.22	0.82	2.03	2.15	1.00	0.83	0.81	0.64	0.56	12.8
1945	0.65	1.93	0.43	0.32	0.62	0.60	0.88	0.47	0.35	0.46	0.49	0.45	7.0
1945	0.29	0.56	1.05	3.14	4.55	1.81	1.34	0.89	0.70	0.69	0.47	0.41	15.9
1946	0.45	0.58	2.15	0.17	2.04	9.51	2.39	1.01	0.33	0.45	0.25	0.24	21.6
1948	0.65	1.89	0.69	3.03	3.39	1.70	1.31	0.84	0.73	0.73	0.55	0.46	16.0
1949	0.48	1.71	0.67	0.95	2.76	2.13	1.62	0.98	0.84	0.80	0.62	0.52	14.1
1951	0.64	1.65	0.46	1.55	1.64	0.88	0.91	0.43	0.38	0.50	0.28	0.25	9.6
1952	0.28	1.29	2.02	2.88	6.05	2.94	1.85	1.01	0.87	0.82	0.65	0.56	21.2
1954	0.55	1.57	1.99	2.45	6.42	4.22	1.76	1.00	0.86	0.82	0.65	0.55	22.8
1955	0.62	2.38	2.18	0.85	7.31	7.55	1.92	1.01	0.87	0.82	0.65	0.56	26.7
1957	0.64	1.78	1.90	3.14	7.05	2.10	1.40	0.99	0.85	0.81	0.62	0.53	22.1
1958	0.61	1.51	2.18	2.44	3.53	1.98	1.37	0.91	0.72	0.71	0.49	0.43	16.9
1959	0.48	2.11	2.18	1.40	3.40 6.63	4.03	1.33	1.01	0.80	0.82	0.60	0.47	22.7
1961	0.64	1.74	0.80	0.69	0.94	1.22	1.22	0.73	0.64	0.64	0.43	0.38	10.1
1962	0.45	2.17	2.06	0.37	0.63	0.70	0.96	0.67	0.61	0.68	0.47	0.41	10.2
1964	0.41	2.12	2.08	1.50	2.10	1.45	1.18	0.69	0.56	0.58	0.38	0.33	13.4
1965	0.30	0.49	0.31	1.51	3.73 4.86	1.62	1.03	0.56	0.41	0.47	0.26	0.27	10.9
1967	0.55	2.65	0.74	0.19	0.71	0.67	0.90	0.61	0.57	0.62	0.44	0.36	9.0
1968	0.39	2.65	2.00	1.90	1.99 1.54	9.51 1.06	2.30	0.96	0.83	0.79	0.61	0.51	24.4
1970	0.39	0.68	2.13	2.59	2.26	1.41	1.41	0.94	0.80	0.75	0.56	0.46	14.4
1971	0.64	2.46	1.75	3.14	6.56	7.26	2.39	1.01	0.87	0.82	0.65	0.56	28.1
1973	0.65	1.93	2.18	2.58	7.05	5.96	1.99	1.01	0.44	0.82	0.65	0.49	26.2
1974	0.65	2.65	2.08	1.55	6.09	2.71	1.56	1.00	0.86	0.81	0.64	0.54	21.1
1975	0.57	2.45	2.17 1.46	3.14 3.01	6.45 7.05	9.40 9.51	2.39	1.01	0.87	0.82	0.65	0.56	29.1 30.4
1977	0.65	2.20	2.15	3.14	7.05	3.86	2.04	1.01	0.87	0.82	0.65	0.56	25.0
1978 1979	0.64 0.61	2.41	1.25	0.86 1.91	1.95	1.94 2.65	1.34	0.89 0.97	0.74	0.72	0.59	0.51	13.8 19.8
1980	0.62	2.65	1.66	3.14	7.05	9.24	2.39	1.01	0.87	0.82	0.65	0.56	30.7
1981	0.65	2.65	1.78	0.39	1.28	1.22	1.10	0.70	0.61	0.63	0.43	0.35	11.8
1983	0.32	1.17	0.37	0.17	0.43	1.44	0.87	0.40	0.33	0.65	0.46	0.45	7.1
1984	0.64	2.57 1 71	0.94 1 99	1.08	2.31 1 58	1.94 1 11	1.30	0.81	0.79	0.77	0.60	0.56	14.3 13 3
1986	0.58	2.51	2.08	0.62	2.74	1.76	1.30	0.90	0.76	0.73	0.53	0.49	15.0
1987	0.02	0.13	2.18	3.14	7.26	9.51	0.50	0.04	0.03	0.03	0.02	0.02	22.9
1988	0.65	1.68	1.87	1.06	1.39	0.34	0.16	0.04	0.03	0.03	0.02	0.02	4.3 6.8
1990	0.02	0.31	0.24	3.14	6.55	1.81	1.29	0.04	0.03	0.03	0.02	0.02	13.5
1991	0.02	0.15	2.13	0.15 1.54	0.25 4.79	0.26 5.05	0.32	0.04	0.03	0.03	0.02	0.02	1.4 14.0
1993	0.02	1.96	1.37	0.17	0.34	0.15	0.16	0.04	0.03	0.03	0.02	0.02	4.3
1994 1995	0.02	0.11	0.12	0.15	2.56	2.40 9.51	0.32	0.26 0.04	0.03 0 03	0.03 0 03	0.02	0.02	6.0 20 3
1996	0.02	0.28	0.16	0.31	1.63	0.70	0.57	0.04	0.03	0.03	0.02	0.15	3.9
1997	0.13	0.24	0.13	0.72	2.06	0.15	0.16	0.04	0.03	0.03	0.02	0.02	3.7
1999	0.02	0.44	2.01	3.07	7.31	9.51	2.39	0.26	0.03	0.03	0.02	0.02	25.1
2000	0.02	0.32	0.20	0.15	6.83	9.51	0.35	0.26	0.03	0.03	0.02	0.02	17.7
2001	0.02	∠.65 0.10	∠.18 0.10	2.07 0.15	0.26	0.15	0.16 0.36	0.04	0.03	0.03	0.02	0.02	7.6 1.3
2003	0.13	0.12	2.15	1.87	0.42	9.51	2.39	0.04	0.03	0.03	0.02	0.02	16.7
2004	0.02	0.10	U.45	0.19	0.00	0.15	0.16	0.04	0.03	0.03	0.02	0.02	1.2
AVE : SD :	0.44	1.49 0.88	1.31 0.79	1.47 1.08	3.34 2.44	3.06 2.99	1.30 0.67	0.65	0.55 0.33	0.55	0.41 0.24	0.36 0.21	14.9 7.2

						App	endix E9)					
File	: 6C-	B.NSI											
Units Descri	: [Mm p. : EWR	13/a] Require	ments fo	r 1925 t	0 2004								
	p 200		_				_		_		_	_	
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Total
1925	0.55	0.52	0.33	1.00	1.09	1.04	0.91	0.81	0.77	0.61	0.60	0.50	8.7
1920	0.45	0.27	0.18	1.17	1.17	0.39	0.33	0.27	0.38	0.52	0.17	0.12	4.2
1928	0.39	0.52	0.43	1.03	1.14	1.15	1.02	0.92	0.83	0.69	0.64	0.54	9.3
1929	0.55	0.66	0.94	1.17	1.08	1.14	1.02	0.94	0.81	0.71	0.66	0.50	9.9
1931	0.57	0.67	0.71	0.66	0.78	0.80	0.73	0.63	0.76	0.56	0.47	0.31	7.7
1932	0.24	0.20	0.55	1.18	1.15	0.92	0.79	0.65	0.72	0.44	0.36	0.24	7.4 9.8
1934	0.53	0.68	0.93	1.03	0.83	0.74	0.64	0.53	0.71	0.41	0.35	0.25	7.6
1935	0.19	0.12	0.12	0.68	1.15	1.13	0.99	0.90	0.82	0.70	0.65	0.56	8.0 10.2
1937	0.46	0.25	0.89	1.10	0.89	0.69	1.02	0.94	0.81	0.71	0.65	0.57	9.0
1938	0.59	0.68	0.94	1.18	1.17	1.18	1.03	0.94	0.81	0.71	0.66	0.57	10.4
1940	0.59	0.68	0.94	1.03	0.76	0.66	0.88	0.85	0.83	0.58	0.50	0.35	8.7
1941	0.29	0.20	0.94	1.10	0.44	1.15	1.01	0.85	0.85	0.68	0.64	0.56	8.7
1942	0.58	0.65	0.55	0.80	1.20	1.14	0.96	0.94	0.81	0.66	0.60	0.45	9.1
1944	0.59	0.62	0.42	0.95	1.01	1.07	0.96	0.83	0.79	0.55	0.45	0.30	8.5
1945	0.41	0.38	0.34	0.30	1.16 0.87	0.85	0.96	0.88	0.85	0.50	0.5/	0.40	8.9 6.0
1947	0.24	0.49	0.93	1.05	0.93	1.18	1.03	0.94	0.81	0.70	0.64	0.52	9.4
1948	0.58	0.61	0.52	1.16	1.09	0.91	0.82	0.73	0.82	0.65	0.59	0.46	8.9 9.2
1950	0.51	0.41	0.94	1.13	0.74	0.86	0.77	0.88	0.82	0.70	0.64	0.56	9.0
1951	0.59	0.62	0.46	0.72	0.57	0.43	0.40	0.33	0.49	0.28	0.26	0.18	5.3
1953	0.53	0.64	0.86	1.14	1.14	1.09	0.96	0.90	0.83	0.69	0.63	0.52	9.9
1954	0.51	0.63	0.92	1.17	1.17	1.18	1.03	0.94	0.81	0.71	0.66	0.57	10.3
1956	0.58	0.56	0.59	0.86	1.03	1.09	0.98	0.91	0.82	0.71	0.66	0.57	9.4
1957	0.59	0.67	0.80	1.18	1.17	1.09	0.94	0.85	0.84	0.63	0.53	0.48	9.8
1958	0.34	0.56	0.94	0.90	1.13	1.08	0.90	0.74	0.73	0.53	0.48	0.54	9.1
1960	0.49	0.68	0.94	1.16	1.16	1.16	1.02	0.94	0.81	0.71	0.66	0.57	10.3
1961	0.59	0.57	0.63	0.62	0.54	0.51	0.56	0.54	0.71	0.36	0.25	0.13	6.0 6.3
1963	0.36	0.28	0.29	0.43	0.49	0.40	0.31	0.25	0.32	0.17	0.10	0.04	3.4
1964	0.12	0.48	0.94	1.16	1.10	0.97	0.80	0.65	0.73	0.48	0.40	0.32	8.1 6.5
1966	0.27	0.32	0.69	1.01	1.14	1.13	1.02	0.94	0.81	0.71	0.66	0.55	9.2
1967	0.53	0.66	0.57	0.38	0.43	0.40	0.48	0.53	0.73	0.57	0.52	0.38	6.2 9.7
1969	0.59	0.68	0.88	0.70	0.70	0.52	0.40	0.30	0.43	0.24	0.19	0.12	5.7
1970	0.13	0.20	0.79	1.14	1.06	0.81	0.88	0.86	0.84	0.68	0.61	0.46	8.5
1972	0.58	0.68	0.50	0.38	0.42	0.41	0.54	0.56	0.72	0.42	0.38	0.57	6.1
1973	0.59	0.68	0.94	1.18	1.17	1.17	1.02	0.94	0.81	0.71	0.66	0.57	10.4
1974	0.59	0.68	0.92	1.14	1.17	1.16	1.03	0.92	0.81	0.70	0.65	0.54	10.3
1976	0.57	0.67	0.66	1.17	1.17	1.18	1.03	0.94	0.81	0.71	0.66	0.57	10.1
1977	0.59	0.61	0.93	1.18	1.17	0.84	1.02	0.94	0.81	0.70	0.65	0.54	10.3
1979	0.58	0.65	0.90	1.11	1.21	1.17	0.99	0.90	0.84	0.67	0.61	0.55	10.2
1980	0.58	0.68	0.93	1.18	1.17	1.17	1.02	0.93	0.81	0.70	0.65	0.56	10.4
1982	0.17	0.20	0.21	0.30	0.34	0.31	0.24	0.19	0.21	0.13	0.10	0.06	2.5
1983	0.09	0.45	0.35	0.34	0.39	0.55	0.61	0.49	0.61	0.54	0.61	0.54	5.6 10.2
1985	0.59	0.64	0.80	0.49	0.65	0.57	1.01	0.94	0.82	0.69	0.62	0.50	8.3
1986	0.54	0.66	0.89	0.82	1.06	1.03	0.89	0.79	0.82	0.62	0.56	0.55	9.2
1988	0.58	0.68	0.75	0.45	0.89	0.88	0.61	0.93	0.63	0.36	0.34	0.25	6.9
1989	0.42	0.68	0.93	1.13	1.09	1.03	0.93	0.85	0.83	0.62	0.54	0.40	9.5
1991	0.43	0.51	0.87	0.24	0.28	0.23	0.17	0.88	0.84	0.09	0.00	0.40	9.8
1992	0.02	0.08	0.88	0.66	0.90	1.05	0.70	0.45	0.53	0.27	0.24	0.18	6.0
1993	0.17	0.66 0.21	0.93	1.00 0.44	0.93	0.69 1.01	0.51	0.34	0.43	0.21	0.15	0.09	6.0 7.1
1995	0.41	0.68	0.94	1.18	1.21	1.18	1.01	0.93	0.81	0.71	0.66	0.57	10.3
1996 1997	0.59	0.67 0.68	0.74	1.17	1.15	1.17 0.76	1.03	0.92	0.84	0.67	0.60	0.54	10.1 7 2
1998	0.54	0.62	0.94	1.18	1.16	1.17	1.02	0.94	0.81	0.71	0.66	0.57	10.3
1999	0.58	0.67	0.93	1.18	1.21	1.18 1 17	1.03	0.94	0.81	0.70	0.66	0.56	10.4
2001	0.54	0.68	0.94	1.14	1.01	0.70	0.55	0.37	0.53	0.32	0.28	0.24	7.3
2002	0.34	0.21	0.18	0.29	0.36	0.32	0.23	0.16	0.17	0.14	0.10	0.06	2.6
2003	0.55	0.16	0.78	0.98	0.59	1.18 0.42	0.40	0.94	0.81	0.25	0.05	0.55	8.6 5.7
AVE .	0.45	0.54	0 74	0 03	0 95	0 03	0 93	0 74	0 73	0 57	0 52	0 4 2	Ω /
SD :	0.17	0.18	0.25	0.29	0.27	0.29	0.25	0.24	0.17	0.18	0.18	0.17	2.1

						App	endix El	0					
File	· 60-	TNCT											
Units	: [Mm]	3/a]											
Descrip	b. : EWR	Require	ments fo	r 1925 †	to 2004								
¥	0-5		Dee	7	Tab	M	3		T	T., 1	7	0	mate 1
rear	UCt	NOV	Dec	Jan	rep	Mar	Apr	мау	Jun	Jui	Aug	Sep	Total
1925	1.00	1.19	0.67	3.77	17.16	1.66	5.13	1.29	1.22	1.12	0.96	0.79	36.0
1926	0.97	0.93	0.32	3.22	1.58	0.63	0.60	0.43	0.60	0.33	0.28	0.19	10.1
1927	1.03	1.74	2.82	6.26	30.10	1.42	3.96	1.06	1.16	0.93	0.77	0.60	51.8
1929	1.00	1.82	5.83	4.56	15.38	1.80	5.94	1.40	1.92	1.32	1.01	0.00	43.0
1930	1.00	1.10	5.87	6.31	12.14	1.68	5.88	1.49	1.80	1.36	1.05	0.90	40.6
1931	1.01	2.20	3.69	2.01	3.14	1.27	3.55	1.00	1.20	1.01	0.74	0.49	21.3
1932	0.85	0.80	2.83	6.93	40.97	1.45	4.14	1.02	1.15	0.78	0.56	0.38	61.9
1934	1.00	2.87	5.74	4.10	3.86	1.18	2.58	0.84	1.13	0.71	0.55	0.85	25.0
1935	0.81	0.53	0.20	2.10	23.89	1.80	5.76	1.42	1.49	1.34	1.03	0.89	41.3
1936	1.01	2.81	5.64	5.62	55.06	1.86	5.86	1.45	1.39	1.26	0.93	0.75	83.6
1937	0.98	0.90	5.33	4.74	4.62	1.10	5.97	1.49	1.84	1.35	1.04	0.90	30.3
1938	1 03	2.96	5.86	0.93 4 61	9 09	1.87	5 87	1.49	2 07	1.30	1.05	0.90	39 4
1940	1.03	4.33	5.83	4.12	3.12	1.05	4.89	1.34	1.31	1.06	0.79	0.55	29.4
1941	0.90	0.82	5.87	4.77	0.98	1.83	5.89	1.35	1.35	1.31	1.01	0.89	27.0
1942	1.02	1.80	5.27	2.43	1.18	1.58	5.99	1.49	2.07	1.36	1.05	0.90	26.1
1943	1.03	1.69	2.81	2.86	45.75	1.82	5.52	1 22	1.33	1.26	0.95	0.72	67.1 29.0
1945	0.94	1.07	0.74	6.93	43.97	1.77	5.53	1.40	1.36	1.24	0.91	0.63	66.5
1946	0.91	0.83	0.30	0.53	4.31	1.35	3.30	0.98	1.15	0.88	0.67	0.46	15.7
1947	0.85	1.13	5.74	4.26	5.20	1.87	6.00	1.49	1.88	1.34	1.01	0.82	31.6
1948	1.02	1.50	2.64	5.82	17.23	1.44	4.34	1.15	1.31	1.21	0.94	0.73	39.3
1950	1.00	1.08	5.87	5.00	2.87	1.36	3.99	1.39	1.52	1.33	1.04	0.89	27.3
1951	1.03	1.55	2.00	2.39	1.58	0.69	0.77	0.52	0.77	0.46	0.41	0.28	12.4
1952	0.77	1.12	5.69	6.50	51.11	1.86	5.94	1.49	2.03	1.36	1.04	0.89	79.8
1953	1.00	1.67	4.82	5.31	32.20	1.73	5.47	1.44	1.44	1.32	0.99	0.83	58.2
1955	1.00	3.05	5.85	4.82	57.03	1.87	6.00	1.49	1.80	1.36	1.05	0.90	86.2
1956	1.02	1.32	3.01	3.22	11.60	1.73	5.65	1.44	1.54	1.35	1.05	0.90	33.8
1957	1.03	1.92	4.22	6.93	55.06	1.74	5.32	1.35	1.33	1.16	0.84	0.75	81.7
1958	1.00	1.30	5.84	5.40	30.22	1.72	5.05	1.18	1.16	0.96	0.76	0.54	55.1
1959	1 00	2.00	5.68	3.39	31.27 44 78	1.72	5.12	1.38	2 07	1.32	1.00	0.82	56.0 75.8
1961	1.03	1.34	3.24	1.87	1.50	0.81	1.91	0.85	1.13	0.62	0.40	0.21	14.9
1962	0.54	2.16	5.71	3.42	1.15	0.65	0.71	0.54	1.13	0.95	0.82	0.60	18.4
1963	0.92	0.94	0.58	1.25	1.14	0.64	0.56	0.39	0.51	0.26	0.16	0.06	7.4
1964	0.68	1.13	5.86	5.87	18.91	1.54	4.19	1.03	1.16	0.85	0.63	0.51	42.4
1966	0.88	1.00	3.56	3.94	33.89	1.79	5.99	1.49	2.07	1.36	1.04	0.88	57.9
1967	1.00	1.81	2.93	0.94	0.90	0.64	1.32	0.85	1.15	1.04	0.83	0.60	14.0
1968	0.92	2.01	5.83	4.85	4.48	1.84	5.99	1.46	1.55	1.33	1.01	0.84	32.1
1969	1.03	2.64	5.15	2.24	2.42	1 20	1 99	0.4/	1 29	1 20	0.30	0.18	26.2
1971	1.01	2.27	4.85	6.93	56.53	1.87	6.00	1.49	2.07	1.36	1.04	0.89	86.3
1972	1.02	1.52	2.44	0.96	0.88	0.65	1.76	0.89	1.13	0.73	0.60	0.90	13.5
1973	1.03	3.12	5.87	6.93	55.06	1.86	5.94	1.49	1.98	1.36	1.05	0.90	86.6
1974	1.03	4.33	5.68	5.23	47.51	1.84	5.76	1.46	2.07	1.35	1.03	0.86	77.9
1976	1.00	1.88	3.39	6.29	53.79	1.87	6.00	1.49	2.07	1.36	1.04	0.90	81.1
1977	1.03	1.49	5.74	6.93	50.08	1.85	5.99	1.48	1.66	1.34	1.02	0.85	79.5
1978	1.00	1.84	3.58	3.24	3.09	1.33	4.15	1.15	1.26	1.07	0.94	0.87	23.5
1979	1 02	1 33	5.35	4.80	52.03	1.86	5.73	1 4 9	1 79	1 35	1 03	0.88	87 5
1981	1.01	3.10	4.33	1.88	1.70	0.70	0.73	0.60	1.05	0.60	0.42	0.27	16.4
1982	0.79	0.81	0.39	0.59	0.59	0.50	0.40	0.30	0.33	0.21	0.16	0.09	5.2
1983	0.54	1.10	0.90	0.74	0.74	0.86	2.27	0.77	0.98	0.97	0.97	0.86	11.7
1985	1.03	4.33 1.63	5.54 4.21	5.53 1.44	±1.53 2.11	1.79 0.90	5.87	1.42	1.47	1.30	1.04 0.98	0.90	23.2
1986	1.00	1.74	5.30	2.96	13.82	1.64	4.95	1.25	1.29	1.14	0.88	0.88	36.9
1987	1.02	1.42	5.87	5.93	49.58	1.87	6.00	1.47	1.52	1.35	1.04	0.90	78.0
1988	1.03	3.91	3.94	1.34	4.85	1.40	2.24	0.69	0.99	0.62	0.54	0.40	22.0
1989	0.95	4.33 1.18	5./9 4.93	4.97 6.20	10.22 39.06	1.82	5.29 5.95	1.34 1.40	1.32	1.14 1.27	0.86 0.96	0.03	44.5 65.8
1991	0.95	0.95	0.28	0.40	0.47	0.37	0.26	0.19	0.18	0.15	0.10	0.03	4.3
1992	0.24	0.32	5.12	2.03	5.05	1.66	3.25	0.71	0.85	0.44	0.38	0.29	20.3
1993	0.79	1.75	5.72	3.83	3.41	1.09	1.55	0.53	0.68	0.33	0.24	0.14	20.1
1995	0.04	4.33	0.94 5.81	⊥.3U 6.73	0.40 57.03	1.87	+.53 5.87	1.48	2.07	1.36	0.84 1.05	0.90	2⊥.0 89 4
1996	1.03	2.07	3.87	5.98	41.30	1.86	6.00	1.46	1.39	1.27	0.96	0.86	68.1
1997	1.02	2.92	4.39	5.89	25.64	1.20	1.82	0.55	0.70	0.38	0.41	0.46	45.4
1998	1.00	1.56	5.87	6.92	45.07	1.86	6.00	1.49	1.95	1.36	1.05	0.90	75.0
7900 7933	1.02	∠.19 1.59	5.75	6.74 1.55	57.03 45.55	1.87	ь.UU 5.26	1.48 1.30	1.31	1.35 1.16	1.04 0.90	0.90	86.9 66 7
2001	1.00	4.33	5.87	5.27	9.29	1.11	1.86	0.58	0.85	0.53	0.44	0.39	31.5
2002	0.92	0.85	0.31	0.51	0.67	0.52	0.38	0.25	0.27	0.23	0.16	0.09	5.2
2003	0.52	0.65	4.08	1.77	42.09	1.86	6.00	1.49	1.70	1.34	1.03	0.88	63.4
2004	1.00	1.13	4.90	3.54	1./4	0.07	0.78	0.55	0.01	0.39	0.30	0.20	10.0
AVE : SD :	0.94 0.14	1.92 1.13	4.15 1.92	4.23 2.04	23.68 21.01	1.48 0.45	4.41 1.95	1.18 0.39	1.38 0.46	1.06 0.37	0.82 0.29	0.67 0.27	45.9 26.5

→

						App	endix El	1					
File	: 7C-	B.NSI											
Units	: [Mm	13/a]		- 1005	- 2004								
Descri	p. · EWR	Require	aments Io	r 1925	LO 2004								
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
1925	0.67	0.80	0.34	1.41	1.95	1.74	1.36	1.22	0.90	0.82	0.75	0.65	12.6
1926	0.65	0.39	0.12	1.16	0002E 66	0.30	0.26	0.22	0.23	0.18	0.19	0.18	4.5
1927	0.69	0.80	0.53	1.48	2.12	1.43	1.56	1.42	1.27	1.14	0.71	0.65	14.2
1929	0.67	1.17	1.49	1.57	1.92	1.93	1.56	1.45	1.33	1.17	0.76	0.66	15.7
1930	0.67	0.69	1.50	1.74	1.83	1.78	1.55	1.45	1.33	1.17	0.76	0.67	15.1
1932	0.37	0.24	0.77	1.75	2.10	1.48	1.13	0.91	0.71	0.61	0.51	0.40	11.0
1933	0.20	1.21	1.49	1.74	2.11	1.93	1.53	1.44	1.31	1.15	0.75	0.65	15.5
1934	0.67	0.10	1.4/	1.48	2.07	1.09	0.83	1.39	1.29	1.16	0.49	0.42	10.8
1936	0.68	1.20	1.45	1.71	2.15	2.00	1.54	1.41	1.25	1.08	0.75	0.65	15.9
1937	0.65	0.35	1.41	1.61	1.45	0.96	1.57	1.45	1.33	1.17	0.75	0.66	13.4
1930	0.69	1.20	1.50	1.58	1.79	1.92	1.57	1.45	1.33	1.17	0.76	0.67	15.6
1940	0.69	1.21	1.50	1.48	1.15	0.90	1.30	1.31	1.10	0.80	0.72	0.58	12.7
1941	0.44	0.25	1.50	1.61	0.38	1.97	1.55	1.32	1.23	1.12	0.75	0.65	12.8
1943	0.69	1.13	0.76	1.05	2.19	1.95	1.46	1.31	1.15	1.07	0.75	0.65	14.2
1944	0.69	1.05	0.51	1.33	1.75	1.81	1.44	1.26	0.96	0.78	0.67	0.50	12.8
1945 1946	0.63 0.50	U.60 0.26	0.35 0.11	1.75 0.11	2.⊥2 1.41	1.36	⊥.46 0.96	⊥.37 0.85	1.23 0.72	⊥.U4 0.70	U.75 0.62	0.64 0.48	13.8 8.1
1947	0.36	0.75	1.48	1.51	1.53	2.00	1.57	1.45	1.33	1.16	0.75	0.65	14.6
1948	0.68	1.00	0.70	1.72	1.95	1.47	1.17	1.06	1.09	0.98	0.75	0.65	13.2
1949	0.64	0.78	1.03	1.14	1.84	1.85	1.51	1.43	1.33	1.17	0.75	0.65	14.1
1951	0.69	1.04	0.58	0.91	0.66	0.39	0.37	0.30	0.31	0.31	0.34	0.28	6.2
1952	0.21	0.74	1.46	1.74	2.14	1.99	1.56	1.45	1.33	1.17	0.76	0.65	15.2
1953	0.67	1.08	1.34	1.69	2.06	2.00	1.44	1.40	1.27	1.13	0.75	0.65	15.4
1955	0.68	1.20	1.50	1.63	2.22	2.00	1.57	1.44	1.33	1.17	0.75	0.66	16.2
1956	0.69	0.88	0.82	1.16	1.82	1.85	1.49	1.41	1.31	1.17	0.76	0.67	14.0
1957	0.69	0.87	1.23	1.69	2.15	1.85	1.41	1.32	0.78	0.86	0.73	0.65	13.9
1959	0.50	1.19	1.46	1.24	2.13	1.83	1.35	1.35	1.26	1.14	0.75	0.65	14.9
1960	0.67	1.21	1.50	1.71	2.12	1.98	1.57	1.45	1.33	1.17	0.76	0.67	16.1
1962	0.12	1.19	1.47	1.25	0.48	0.33	0.33	0.31	0.56	0.40	0.73	0.63	8.2
1963	0.55	0.40	0.28	0.37	0.47	0.31	0.24	0.19	0.18	0.12	0.06	0.04	3.2
1964	0.17	0.75	1.50	1.72	1.96	1.58	1.14	0.92	0.74	0.67	0.58	0.53	12.3
1966	0.42	0.49	1.01	1.45	2.07	1.92	1.57	1.45	1.33	1.17	0.24	0.65	14.3
1967	0.67	1.17	0.80	0.26	0.31	0.31	0.52	0.69	0.72	0.80	0.73	0.63	7.6
1968	0.54	1.19	1.50	1.63	1.44	1.98	1.57	1.42	1.31	1.15	0.75	0.65	15.1
1970	0.19	0.25	1.22	1.69	1.86	1.26	1.29	1.33	1.25	1.11	0.75	0.65	12.9
1971	0.68	1.19	1.34	1.75	2.22	2.00	1.57	1.45	1.33	1.17	0.76	0.65	16.1
1972	0.68	1.02	0.66	0.26	2 15	0.33	0.64	0.74	0.61	0.56	0.55	0.67	7.0
1974	0.69	1.21	1.46	1.68	2.13	1.98	1.52	1.42	1.32	1.17	0.75	0.65	16.0
1975	0.67	0.57	1.50	1.75	2.21	2.00	1.57	1.45	1.33	1.17	0.76	0.67	15.7
1976	0.68	1.1/	0.95	1.74	2.14	2.00	1.57	1.45	1.33	1.17	0.75	0.67	15.6
1978	0.67	1.17	1.02	1.17	1.14	1.33	1.13	1.06	0.99	0.81	0.75	0.65	11.9
1979	0.68	1.12	1.41	1.63	2.22	1.99	1.51	1.40	1.25	1.09	0.75	0.65	15.7
1980	0.68	⊥.∠⊥ 1.20	1.25	1./5 0.72	2.15 0.71	⊿.∪U 0.40	1.56 0.35	1.44 0.38	1.33 0.51	0.45	0.75	0.05	10.2 7.3
1982	0.25	0.25	0.17	0.13	0.13	0.10	0.13	0.11	0.10	0.07	0.06	0.08	1.6
1983	0.12	0.70 1 21	0.38	0.18 1 71	0.21	0.64 1 92	0.77 1 47	0.60 1 39	0.45	0.77 1 17	0.75	0.65	6.2
1985	0.69	1.09	1.23	0.47	0.87	0.69	1.55	1.45	1.28	1.13	0.75	0.65	11.8
1986	0.67	1.15	1.40	1.08	1.88	1.71	1.31	1.18	1.05	0.83	0.75	0.65	13.7
1987 1988	0.68 0.69	0.95	1.50 1.14	1.73 0 41	2.21	2.00	1.57	1.43	1.30	1.17	0.76 0.49	0.67 0.42	16.0 9.4
1989	0.64	1.21	1.48	1.66	1.94	1.71	1.39	1.30	1.13	0.83	0.74	0.64	14.7
1990	0.64	0.79	1.36	1.74	2.10	1.96	1.56	1.37	1.18	1.09	0.75	0.65	15.2
1992	0.64 0.03	U.43 0.04	∪.⊥0 1.38	U.U8 0.80	0.09 1.48	U.U5 1.74	0.07	0.04 0.52	0.04 0.36	U.U4 0.29	0.02	0.02 0.29	⊥.6 8.2
1993	0.25	1.16	1.47	1.42	1.21	0.95	0.58	0.30	0.26	0.18	0.15	0.13	8.1
1994	0.34	0.28	0.39	0.39	1.57	1.65	1.21	1.14	1.08	0.82	0.73	0.63	10.2
1995	0.64	1.19	1.49 1.11	1.73	2.22	⊿.00 1.99	1.55	1.44 1.42	1.25	1.09	0.75	0.65	15.6
1997	0.68	1.20	1.26	1.73	2.01	1.12	0.65	0.32	0.27	0.23	0.34	0.48	10.3
1998	0.67	1.04	1.50	1.75	2.12	1.99	1.57	1.45	1.33	1.17	0.76	0.67	16.0
2000	0.68	1.07	1.29	0.53	2.13	1.99	1.39	1.24	1.10	0.88	0.75	0.64	13.7
2001	0.67	1.21	1.50	1.68	1.76	0.99	0.66	0.36	0.36	0.38	0.37	0.40	10.3
2002	0.53	0.27	0.12	0.10	0.18 2 19	0.13	0.12	0.07 1 45	0.07	0.09	0.06	0.08	1.8
2004	0.67	0.75	1.36	1.30	0.72	0.36	0.38	0.32	0.34	0.24	0.21	0.19	6.8
	0 5 0	0 00	1 11	1 20	1 61	1 40	1 20	1 00	0 00	0 07	0 62	0 55	12 2
SD :	0.18	0.36	0.47	0.53	0.67	0.62	0.46	0.45	0.98	0.87	0.03	0.19	3.9

						App	endix El	2					
File : 7C-T.NSI Units : [Mm3/a] Descrip. : EWR Requirements for 1925 to 2004													
Year	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Total
File Units Descrip Year 1925 1926 1927 1928 1929 1931 1932 1933 1934 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1957 1958 1957 1958 1959 1950 1951 1952 1955 1956 1957 1958 1955 1956 1957 1958 1957 1958 1955 1956 1957 1958 1957 1958 1957 1958 1959 1950 1951 1972 1958 1959 1950 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1955 1956 1957 1958 1957 1958 1959 1950 1957 1958 1957 1958 1959 1950 1957 1958 1957 1958 1959 1956 1957 1958 1957 1958 1957 1958 1956 1957 1958 1957 1958 1959 1950 1957 1958 1959 1950 1957 1958 1959 1950 1957 1958 1959 1956 1957 1958 1959 1956 1957 1958 1956 1957 1958 1959 1956 1957 1958 1959 1957 1958 1959 1957 1958 1959 1957 1958 1959 1957 1958 1959 1957 1958 1959 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1957 1958 1957 1958 1957 1958 1957 1957 1958 1957 1958 1957 1957 1958 1957 1957 1957 1958 1957 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1958 1957 1957 1958 1957 1957 1957 1957 1957 1957 1957 1957	: 7C- : [Mm p. : EWR Oct 1.00 0.97 1.03 0.94 1.00 1.00 1.01 0.86 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	T.NSI 3/a] Require Nov 1.19 0.95 1.74 1.20 1.82 1.20 1.82 1.20 1.82 1.20 0.81 4.40 2.20 0.81 4.40 2.87 0.47 2.92 2.96 4.40 4.40 1.69 1.55 1.12 1.67 1.62 3.06 1.32 1.55 1.12 1.67 1.62 3.06 1.32 1.92 1.30 2.90 1.34 1.55 1.12 1.67 1.62 3.06 1.32 1.92 1.30 2.90 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.90 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 2.00 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.55 1.12 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.62 3.06 1.32 1.92 1.30 2.00 1.34 1.62 3.06 1.32 1.92 1.30 1.62 3.06 1.32 1.92 1.30 1.60 1.32 1.92 1.30 1.60 1.32 1.52 3.16 1.62 3.06 1.32 1.92 1.30 1.60 1.32 1.92 1.60 1.62 3.16 0.96 1.34 1.60 1.62 3.16 0.96 1.34 1.60 1.62 3.10 1.61 1.62 3.10 1.62 3.12 1.60 1.62 3.12 1.60 1.62 3.12 1.60 1.64 0.86 1.49 1.84 1.66 1.63 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74 1.74	ments fo: Dec 0.67 0.32 2.82 1.72 6.94 6.94 6.94 6.94 6.95 6.99 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.98 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.94 6.95 6.95 6.96 6.99 4.85 2.00 6.75 6.96 3.01 4.22 6.95 6.99 3.24 6.95 6.99 3.24 6.95 6.99 3.24 6.95 6.99 6.92 6.95 6.99 6.95 6.99 6.95 6.99 6.95 6.96 6.99 6.95 6.95 6.96 6.99 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.99 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.95 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.85 6.	r 1925 t Jan 4.69 3.26 7.59 4.98 5.42 7.64 2.23 8.21 7.70 2.31 5.00 2.31 5.01 5.73 8.21 0.45 5.14 5.01 5.75 2.95 4.20 0.45 5.14 5.14 6.21 0.45 5.14 5.88 8.21 6.75 7.23 3.19 6.29 2.56 7.81 6.781 2.56 7.81 6.784 5.88 8.21 2.56 7.81 6.75 7.23 3.19 6.95 2.56 7.81 6.701 2.56 7.81 6.72 7.84 5.88 8.21 6.75 7.23 3.19 6.92 2.56 7.81 6.72 7.84 5.88 8.21 6.75 7.23 3.19 6.92 2.56 7.81 6.72 7.84 5.88 8.21 6.75 7.23 3.19 6.93 2.56 7.81 6.75 7.23 3.19 6.92 2.56 7.81 6.75 7.23 3.19 6.92 2.56 7.81 6.75 7.23 3.19 6.93 2.45 6.21 2.78 4.88 6.21 2.78 4.88 6.21 6.51 5.70 7.01 2.04 5.70 7.61 2.56 7.81 6.52 7.84 5.25 7.84 5.25 7.84 5.25 7.23 3.19 6.25 7.84 5.25 7.84 5.25 7.23 3.19 6.25 7.84 5.25 7.84 5.25 7.23 7.84 5.25 7.84 5.25 7.23 7.84 5.25 7.23 7.84 5.25 7.84 5.25 7.23 7.27 7.23 7.81 6.75 7.23 7.81 6.75 7.23 7.84 5.25 7.25 7.23 7.84 5.25 7.23 7.84 7.25 7.23 7.84 5.25 7.25 7.23 7.27 7.84 5.25 7.23 7.27 7.27 7.27 7.27 7.27 7.27 7.27	reb Feb 17.16 1.58 30.10 32.37 15.38 12.14 41.95 42.42 3.86 23.89 4.62 55.98 4.62 55.98 4.62 55.98 1.18 46.57 9.22 0.99 3.12 0.98 4.62 55.98 1.18 46.57 9.23 12.33 2.87 1.58 55.98 55.98 57.98 1.59 55.98 1.15 1.58 55.98 55.98 1.59 55.98 1.59 1.55 1.15 1.14 18.91 20.42 3.23 1.59 55.98 1.60 55.98 30.22 31.23 1.55 1.15 1.14 18.91 20.45 30.22 31.23 1.58 55.98 1.60 55.98 30.22 31.25 1.51 1.14 18.91 20.45 30.22 31.25 1.58 55.98 55.98 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.27 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.59 30.22 31.25 1.55 1.14 1.50 5.98 30.22 31.25 1.55 1.15 1.14 1.50 5.98 30.22 31.25 1.55 1.14 1.50 1.55 1.14 1.50 5.98 30.22 31.25 1.55 1.14 1.50 5.98 30.22 31.25 1.55 1.14 1.55 1.14 1.50 5.98 30.22 31.27 34.23 0.90 57.46 0.59 5.98 1.70 5.98 1.50 1.15 1.14 1.50 5.98 30.27 31.25 1.55 1.14 1.50 5.98 30.27 31.25 1.55 1.14 1.55 1.14 1.55 1.14 1.50 5.98 30.27 31.25 1.55 1.14 1.55 1.14 1.55 1.14 1.55 1.14 1.55 1.15 1.14 1.55 1.15 1.14 1.55 1.15 1.14 1.55 1.15 1.14 1.55 5.98 1.55 1.55 1.14 1.55 1.15 1.14 1.55 1.15 1.14 1.55 1.55 1.55 1.15 1.14 1.55 5.98 1.70 0.74 3.21 1.15 1.75 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55 1.55	Mar 2.74 0.45 2.21 3.12 3.07 1.89 2.29 3.06 1.50 3.20 1.50 3.210 2.06 1.39 3.12 2.92 3.10 2.05 3.01 2.06 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.21 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.221 3.21	Apr 5.85 0.60 3.96 6.83 6.82 6.75 3.55 4.25 9.258 6.60 6.73 6.86 6.74 5.54 6.78 6.31 3.30 6.90 6.56 3.99 6.56 3.30 6.90 6.56 9.07 6.82 6.25 9.07 6.82 6.25 9.07 6.88 6.07 5.76 4.59 6.90 6.90 6.90 6.90 1.91 0.56 4.34 7.56 6.89 1.91 0.56 4.34 6.89 1.91 0.56 4.34 6.88 0.77 5.56 6.89 1.91 0.56 4.34 0.56 6.89 1.91 0.56 4.34 0.56 6.89 1.91 0.56 4.34 0.56 6.89 1.91 0.56 4.34 0.56 6.88 0.77 5.56 6.89 1.91 0.56 4.34 0.56 6.88 0.77 5.59 0.77 5.59 0.77 5.59 0.77 5.59 0.77 5.59 0.76 6.88 0.77 5.59 0.77 5.59 0.77 5.59 0.76 6.88 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.56 6.80 0.77 5.59 0.77 5.59 0.77 5.59 0.77 6.82 6.60 6.90 0.77 5.59 0.77 5.59 0.77 5.59 0.77 6.88 6.60 6.83 0.77 5.59 0.77 6.85 6.60 6.83 0.74 5.59 0.77 5.59 0.77 6.85 5.59 0.77 5.59 0.77 6.56 6.83 0.74 5.59 0.77 6.56 6.83 0.77 6.56 6.83 0.74 0.56 6.83 0.77 6.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.83 0.74 0.56 6.55 0.77 6.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.55	May 1.86 0.33 1.42 2.17 2.23 2.14 1.33 1.36 2.00 1.03 2.16 2.24 1.96 1.97 2.24 1.96 1.97 2.24 1.96 2.07 1.27 2.24 1.96 2.07 1.27 2.24 1.96 2.04 0.44 2.23 2.13 2.21 2.14 2.18 0.38 1.98 1.65 2.24 1.05 2.24 1.05 2.24 1.05 2.24 1.05 2.24 1.01 2.23 2.18 0.38 1.99 2.046 0.38 1.38 1.99 2.04 1.11 2.23 2.18 0.38 1.99 2.24 1.11 2.23 2.18 2.24 1.01 2.22 1.60 2.12 1.10 2.24 1.11 2.22 1.60 2.12 1.60 2.12 1.60 2.12 1.60 2.24 1.11 2.23 1.61 2.24 1.11 2.23 1.62 2.24 1.11 2.24 2.24 1.61 2.24 1.11 2.22 1.60 2.12 1.60 2.24 1.11 2.22 1.60 2.12 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.11 2.22 1.60 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 1.79 2.10 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.2	Jun 1.34 0.34 1.89 1.98 1.29 1.06 0.88 1.92 1.96 0.88 1.92 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98	Jul 1.23 0.27 1.69 1.75 1.75 1.75 1.75 1.75 1.20 1.67 1.75 1.60 1.75 1.75 1.60 1.75 1.75 1.60 1.75 1.75 1.60 1.75 1.75 1.60 1.75 1.75 1.60 1.75 1.75 1.75 1.75 1.60 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.68 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24 1.24	Aug 1.12 0.29 1.09 1.12 1.13 1.05 0.77 1.13 1.05 0.77 1.13 1.12 1.13 1.13 1.12 1.13 1.13 1.12 1.13 1.12 1.12 1.13 1.12 1.12 1.13 1.12 1.12 0.51 1.13 1.13 1.13 1.11 0.94 1.12 1.13 1.13 1.13 1.13 1.13 1.11 0.90 1.11 0.10 0.87 1.13 0.11 0.10 0.87 1.13 1.12 1.13 1.12 1.13 1.12 1.13 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 1.12 <td>Sep 0.97 0.28 0.97 0.98 0.07 0.63 0.97 0.63 0.99 1.00 0.87 0.99 1.00 0.87 0.99 1.00 0.97 0.72 0.97 0.97 0.97 0.98 0.93 0.97 0.97 0.98 0.99 1.00 0.97 0.97 0.98 0.99 1.00 0.97 0.98 0.97 0.98 0.99 1.00 0.97 0.98 0.99 1.00 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.92 0.97 0.92 0.97 0.97 0.97 0.97 0.98 0.99 1.00 0.97 0.97 0.98 0.99 0.97 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.92 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97</td> <td>Total 39.8 9.6 55.2 59.0 48.5 23.3 65.9 79.9 27.9 45.2 91.3 34.7 93.4 44.9 34.2 33.0 71.8 33.0 71.8 33.0 71.8 33.0 71.2 37.3 43.2 38.8 32.0 12.4 86.4 63.5 91.4 93.1 37.6 87.4 60.8 61.1 82.6 15.3 12.0 74.9 84.5 85.5 86.7 86.4 25.5 84.5 85.5 86.7 86.4 25.5 84.5 85.5 85.5 86.7 86.4 25.5 84.5 85.5 85.5 86.7 85.5 85.5 86.7 85.5 85.5 86.7 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5</td>	Sep 0.97 0.28 0.97 0.98 0.07 0.63 0.97 0.63 0.99 1.00 0.87 0.99 1.00 0.87 0.99 1.00 0.97 0.72 0.97 0.97 0.97 0.98 0.93 0.97 0.97 0.98 0.99 1.00 0.97 0.97 0.98 0.99 1.00 0.97 0.98 0.97 0.98 0.99 1.00 0.97 0.98 0.99 1.00 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.97 0.97 0.97 0.92 0.97 0.92 0.97 0.97 0.97 0.97 0.98 0.99 1.00 0.97 0.97 0.98 0.99 0.97 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.92 0.97 0.97 0.98 0.99 0.97 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.98 0.99 0.97 0.97 0.97 0.97 0.97 0.97 0.97	Total 39.8 9.6 55.2 59.0 48.5 23.3 65.9 79.9 27.9 45.2 91.3 34.7 93.4 44.9 34.2 33.0 71.8 33.0 71.8 33.0 71.8 33.0 71.2 37.3 43.2 38.8 32.0 12.4 86.4 63.5 91.4 93.1 37.6 87.4 60.8 61.1 82.6 15.3 12.0 74.9 84.5 85.5 86.7 86.4 25.5 84.5 85.5 86.7 86.4 25.5 84.5 85.5 85.5 86.7 86.4 25.5 84.5 85.5 85.5 86.7 85.5 85.5 86.7 85.5 85.5 86.7 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5 85.5
1965 1986 1987 1988 1989 1990 1991 1992 1993 1995 1995 1995 1995 1995 1996 2001 2002 2001 2002 2004 AVE :	1.03 1.00 1.02 1.03 0.95 0.96 0.96 0.95 1.03 1.02 1.00 1.02 1.00 1.02 1.00 1.02 1.00 0.92 1.00 0.92 0.92 0.94	1.03 1.74 1.42 3.96 4.40 1.18 0.97 0.26 1.75 0.88 4.40 2.07 2.92 1.56 2.19 1.59 4.40 0.87 0.87 1.13	4.21 5.95 6.99 4.93 0.28 5.47 6.83 0.94 6.92 3.87 4.39 6.99 6.85 4.54 6.99 0.31 4.08 5.00	1.48 3.04 7.32 1.35 6.13 7.54 0.33 2.25 4.75 1.30 8.02 7.30 8.20 8.03 1.62 6.57 0.43 1.91 4.04	$\begin{array}{c} 2.11\\ 13.82\\ 50.15\\ 4.85\\ 16.22\\ 39.87\\ 0.47\\ 5.05\\ 3.41\\ 6.40\\ 57.98\\ 42.31\\ 25.64\\ 45.79\\ 57.98\\ 46.23\\ 9.29\\ 0.67\\ 43.08\\ 1.74\\ \end{array}$	1.00 2.71 3.21 2.77 3.11 0.07 2.75 1.48 2.62 3.21 3.19 3.21 3.19 3.21 1.53 0.20 0.53	5.65 5.65 6.90 2.24 6.03 6.83 0.26 3.25 1.55 4.91 6.73 6.90 1.82 6.89 6.90 1.82 6.89 6.90 0.38 6.90 0.38 6.90 0.78 4.95	2.24 1.79 2.20 0.75 1.95 2.06 0.78 0.45 1.73 2.21 2.18 0.47 2.23 2.22 1.88 0.54 0.10 2.23 0.48 1.66	1.92 1.57 1.94 0.69 1.76 0.06 0.54 0.39 1.62 1.98 1.87 0.41 1.98 1.96 1.64 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.5	1.08 1.24 1.74 0.69 1.24 1.62 0.05 0.44 0.27 1.63 0.35 1.75 1.75 1.75 1.75 1.75 1.75 1.75 1.7	1.12 1.12 1.13 0.73 1.11 1.12 0.04 0.23 1.11 1.13 1.12 0.52 1.13 1.13 1.13 1.13 1.12 0.56 0.10 1.12 0.33 0.95	0.97 0.99 0.63 0.95 0.97 0.02 0.44 0.21 0.97 0.72 1.00 0.97 0.72 1.00 0.98 0.96 0.60 0.12 0.98 0.30	20.2 40.6 85.0 23.0 72.0 3.6 21.9 22.1 24.5 96.3 74.5 47.3 81.7 94.2 71.1 34.5 4.3 68.3 16.2 50.0
SD :	0.14	1.15	2.37	2.57	21.38	1.00	2.33	0.70	0.61	0.54	0.32	0.27	28.7